IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i7p148-d246630.html
   My bibliography  Save this article

Assessment of Potential Land Suitability for Tea ( Camellia sinensis (L.) O. Kuntze) in Sri Lanka Using a GIS-Based Multi-Criteria Approach

Author

Listed:
  • Sadeeka Layomi Jayasinghe

    (School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
    Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka)

  • Lalit Kumar

    (School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia)

  • Janaki Sandamali

    (Department of oceanography and marine geology, Faculty of Fisheries and Marine Sciences & Technology, University of Ruhuna, Matara 81000, Sri Lanka)

Abstract

The potential land suitability assessment for tea is a crucial step in determining the environmental limits of sustainable tea production. The aim of this study was to assess land suitability to determine suitable agricultural land for tea crops in Sri Lanka. Climatic, topographical and soil factors assumed to influence land use were assembled and the weights of their respective contributions to land suitability for tea were assessed using the Analytical Hierarchical Process (AHP) and the Decision-Making Trail and Evaluation Laboratory (DEMATEL) model. Subsequently, all the factors were integrated to generate the potential land suitability map. The results showed that the largest part of the land in Sri Lanka was occupied by low suitability class (42.1%) and 28.5% registered an unsuitable land cover. Furthermore, 12.4% was moderately suitable, 13.9% was highly suitable and 2.5% was very highly suitable for tea cultivation. The highest proportion of “very highly suitable” areas were recorded in the Nuwara Eliya District, which accounted for 29.50% of the highest category. The model validation results showed that 92.46% of the combined “highly suitable” and “very highly suitable” modelled classes are actual current tea-growing areas, showing the overall robustness of this model and the weightings applied. This result is significant in that it provides effective approaches to enhance land-use efficiency and better management of tea production.

Suggested Citation

  • Sadeeka Layomi Jayasinghe & Lalit Kumar & Janaki Sandamali, 2019. "Assessment of Potential Land Suitability for Tea ( Camellia sinensis (L.) O. Kuntze) in Sri Lanka Using a GIS-Based Multi-Criteria Approach," Agriculture, MDPI, vol. 9(7), pages 1-25, July.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:7:p:148-:d:246630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/7/148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/7/148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seo, Sung-No Niggol & Mendelsohn, Robert & Munasinghe, Mohan, 2005. "Climate change and agriculture in Sri Lanka: a Ricardian valuation," Environment and Development Economics, Cambridge University Press, vol. 10(5), pages 581-596, October.
    2. Xinyi Zhou & Yong Hu & Yong Deng & Felix T. S. Chan & Alessio Ishizaka, 2018. "A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP," Annals of Operations Research, Springer, vol. 271(2), pages 1045-1066, December.
    3. Herath, Deepananda & Weersink, Alfons, 2009. "From Plantations to Smallholder Production: The Role of Policy in the Reorganization of the Sri Lankan Tea Sector," World Development, Elsevier, vol. 37(11), pages 1759-1772, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An T. N. Dang & Lalit Kumar & Michael Reid, 2020. "Modelling the Potential Impacts of Climate Change on Rice Cultivation in Mekong Delta, Vietnam," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    2. Jie Xu & Suri Guga & Guangzhi Rong & Dao Riao & Xingpeng Liu & Kaiwei Li & Jiquan Zhang, 2021. "Estimation of Frost Hazard for Tea Tree in Zhejiang Province Based on Machine Learning," Agriculture, MDPI, vol. 11(7), pages 1-16, June.
    3. Prapasiri Tongsiri & Wen-Yu Tseng & Yuan Shen & Hung-Yu Lai, 2020. "Comparison of Soil Properties and Organic Components in Infusions According to Different Aerial Appearances of Tea Plantations in Central Taiwan," Sustainability, MDPI, vol. 12(11), pages 1-21, May.
    4. Sung Soo Kim & Chong Kyu Lee & Hag Mo Kang & Soo Im Choi & So Hui Jeon & Hyun Kim, 2021. "Land Suitability Evaluation for Wild-Simulated Ginseng Cultivation in South Korea," Land, MDPI, vol. 10(2), pages 1-13, January.
    5. Mehrnoosh Taherizadeh & Arman Niknam & Thong Nguyen-Huy & Gábor Mezősi & Reza Sarli, 2023. "Flash flood-risk areas zoning using integration of decision-making trial and evaluation laboratory, GIS-based analytic network process and satellite-derived information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2309-2335, September.
    6. S. Abdul Rahaman & S. Aruchamy, 2022. "Land Suitability Evaluation of Tea ( Camellia sinensis L.) Plantation in Kallar Watershed of Nilgiri Bioreserve, India," Geographies, MDPI, vol. 2(4), pages 1-23, November.
    7. Chiranjit Singha & Kishore Chandra Swain & Sanjay Kumar Swain, 2020. "Best Crop Rotation Selection with GIS-AHP Technique Using Soil Nutrient Variability," Agriculture, MDPI, vol. 10(6), pages 1-18, June.
    8. Mateusz Ciski & Krzysztof Rząsa & Marek Ogryzek, 2019. "Use of GIS Tools in Sustainable Heritage Management—The Importance of Data Generalization in Spatial Modeling," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    9. Ying Han & Yongjian He & Zhuoran Liang & Guoping Shi & Xiaochen Zhu & Xinfa Qiu, 2023. "Risk Assessment and Application of Tea Frost Hazard in Hangzhou City Based on the Random Forest Algorithm," Agriculture, MDPI, vol. 13(2), pages 1-14, January.
    10. Shouqiang Yin & Jing Li & Jiaxin Liang & Kejing Jia & Zhen Yang & Yuan Wang, 2020. "Optimization of the Weighted Linear Combination Method for Agricultural Land Suitability Evaluation Considering Current Land Use and Regional Differences," Sustainability, MDPI, vol. 12(23), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. P. Dayani Gunathilaka & James C. R. Smart & Christopher M. Fleming, 2017. "The impact of changing climate on perennial crops: the case of tea production in Sri Lanka," Climatic Change, Springer, vol. 140(3), pages 577-592, February.
    2. Rajapaksha P. D. Gunathilaka & James C. R. Smart & Christopher M. Fleming & Syezlin Hasan, 2018. "The impact of climate change on labour demand in the plantation sector: the case of tea production in Sri Lanka," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), pages 480-500, July.
    3. Gunathilaka, Rajapaksha P. D. & Smart, James C. R. & Fleming, Christopher M. & Hasan, Syezlin, 2018. "The impact of climate change on labour demand in the plantation sector: the case of tea production in Sri Lanka," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(3), July.
    4. Wassie Berhanu & Fekadu Beyene, 2015. "Climate Variability and Household Adaptation Strategies in Southern Ethiopia," Sustainability, MDPI, vol. 7(6), pages 1-23, May.
    5. Klasen, Stephan & Meyer, Katrin M. & Dislich, Claudia & Euler, Michael & Faust, Heiko & Gatto, Marcel & Hettig, Elisabeth & Melati, Dian N. & Jaya, I. Nengah Surati & Otten, Fenna & Pérez-Cruzado, Cés, 2016. "Economic and ecological trade-offs of agricultural specialization at different spatial scales," Ecological Economics, Elsevier, vol. 122(C), pages 111-120.
    6. Gatto, Marcel & Wollni, Meike & Rosyani, Ir. & Qaim, Matin, 2015. "Oil Palm Boom, Contract Farming, and Village Development: Evidence from Indonesia," EFForTS Discussion Paper Series 10, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    7. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    8. Wasantha Athukorala & Clevo Wilson, 2012. "Groundwater overuse and farm-level technical inefficiency: evidence from Sri Lanka," School of Economics and Finance Discussion Papers and Working Papers Series 279, School of Economics and Finance, Queensland University of Technology.
    9. Wang, Yuhan & Lewis, David J., 2024. "Wildfires and climate change have lowered the economic value of western U.S. forests by altering risk expectations," Journal of Environmental Economics and Management, Elsevier, vol. 123(C).
    10. Briones, Roehlano & Felipe, Jesus, 2013. "Agriculture and Structural Transformation in Developing Asia: Review and Outlook," ADB Economics Working Paper Series 363, Asian Development Bank.
    11. Akshay Hinduja & Manju Pandey, 2019. "An Integrated Intuitionistic Fuzzy MCDM Approach to Select Cloud-Based ERP System for SMEs," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1875-1908, November.
    12. Yanbin Li & Feng Zhang & Yun Li & Bingkang Li & Zhen Li, 2019. "Evaluating the Power Grid Investment Behavior in China: From the Perspective of Government Supervision," Energies, MDPI, vol. 12(21), pages 1-23, November.
    13. Shadrack Kipkogei & Ruth Karoney & John Kipkorir Tanui, 2024. "Impact of Cooperative Membership on Tea Marketing Strategies and Farmers’ Income in Kericho, Kenya: Use of Endogenous Switching Approach," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(8), pages 3156-3173, August.
    14. Eriyagama, Nishadi & Smakhtin, Vladimir, 2010. "Observed and projected climatic changes, their impacts and adaptation options for Sri Lanka: a review," IWMI Conference Proceedings 211313, International Water Management Institute.
    15. Jagath Edirisinghe & Susantha Siriwardana & Sarath Siriwardana & Punsara Pras & ith, "undated". "Taxing the Pollution: A Case for Reducing the Environmental Impacts of Rubber Production in Sri Lanka," Working papers 5, The South Asian Network for Development and Environmental Economics.
    16. Marisol Velazquez, 2014. "Commercialization and consumption of coffee in Mexico," ERSA conference papers ersa14p1681, European Regional Science Association.
    17. Mendelsohn, Robert & Seo, Niggol, 2007. "Changing farm types and irrigation as an adaptation to climate change in Latin American agriculture," Policy Research Working Paper Series 4161, The World Bank.
    18. Jane Kabubo‐Mariara, 2008. "Climate change adaptation and livestock activity choices in Kenya: An economic analysis," Natural Resources Forum, Blackwell Publishing, vol. 32(2), pages 131-141, May.
    19. Xiaobo Zhang & Chengshan Wang & Jie Fan & Huijun Wang & Hailong Li, 2020. "Optimizing the Analytic Hierarchy Process through a Suitability Evaluation of Underground Space Development in Tonghu District, Huizhou City," Energies, MDPI, vol. 13(3), pages 1-22, February.
    20. Mejía, Gonzalo & García-Díaz, César, 2018. "Market-level effects of firm-level adaptation and intermediation in networked markets of fresh foods: A case study in Colombia," Agricultural Systems, Elsevier, vol. 160(C), pages 132-142.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:7:p:148-:d:246630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.