IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i6p124-d239783.html
   My bibliography  Save this article

Assessment of Cover Crop Management Strategies in Nebraska, US

Author

Listed:
  • Maxwel C. Oliveira

    (Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA)

  • Liberty Butts

    (Department of Agronomy and Horticulture, University of Nebraska-Lincoln, West Central Research and Extension Center, North Platte, NE 69101, USA)

  • Rodrigo Werle

    (Department of Agronomy, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706, USA)

Abstract

Adoption of cover crops has the potential to increase agricultural sustainability in the US and beyond. In 2017, a survey was conducted with Nebraska stakeholders in an attempt to evaluate current cover crop management strategies adopted in soybean ( Glycine max [L.] Merr.), field corn ( Zea mays L.), and seed corn production. Eighty-two Nebraska stakeholders answered the survey, of which 80% identified themselves as growers. Eighty-seven percent of respondents manage cover crops, and the average cover crop ha planted on a per farm basis is 32%. The primary method of establishing cover crops following soybeans and field corn is drilling. In seed corn, interseeding is the main seeding strategy for cover crop establishment. Cereal rye ( Secale cereale L.) appeared as the most adopted cover crop species (either alone or in mixtures with radish [ Raphanus sativus L.] or hairy vetch [ Vicia villosa Roth]). Over 95% of respondents utilize herbicides for cover crop termination in the spring before crop planting. Glyphosate is used by 100% of survey respondents that use herbicides for cover crop termination. The major observed impacts of incorporating cover crops into a production system according to survey respondents are reduced soil erosion and weed suppression. According to 93% of respondents, cover crops improve weed control by suppressing winter and/or summer annual weed species. The biggest challenge reported by cover crop adopters is planting and establishing a decent stand before winter. According to the results of this survey, there are different management strategies, positive outcomes, and challenges that accompany cover crop adoption in Nebraska. These results will help growers, agronomists, and researchers better guide cover crop adoption, management, and future research and education needs in Nebraska and beyond.

Suggested Citation

  • Maxwel C. Oliveira & Liberty Butts & Rodrigo Werle, 2019. "Assessment of Cover Crop Management Strategies in Nebraska, US," Agriculture, MDPI, vol. 9(6), pages 1-14, June.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:6:p:124-:d:239783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/6/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/6/124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Plastina, Alejandro & Liu, Fangge & Miguez, Fernando E. & Carlson, Sarah, 2018. "Cover Crops Use in Midwestern U.S. Agriculture: Perceived Benefits and Net Returns," ISU General Staff Papers 201804290700001595, Iowa State University, Department of Economics.
    2. Bergtold, Jason S. & Duffy, Patricia A. & Hite, Diane & Raper, Randy L., 2012. "Demographic and Management Factors Affecting the Adoption and Perceived Yield Benefit of Winter Cover Crops in the Southeast," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(1), pages 1-18, February.
    3. Knowler, Duncan & Bradshaw, Ben, 2007. "Farmers' adoption of conservation agriculture: A review and synthesis of recent research," Food Policy, Elsevier, vol. 32(1), pages 25-48, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tong & Xu, Zheng & Kolady, Deepthi & Ulrich-Schad, Jessica D. & Clay, David, 2020. "Cover-Crop Usage in South Dakota: Farmer Perceived Profitability and Future Adoption Decisions," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 46(2), August.
    2. Anna Kocira & Mariola Staniak, 2021. "Weed Ecology and New Approaches for Management," Agriculture, MDPI, vol. 11(3), pages 1-6, March.
    3. repec:ags:aaea22:335568 is not listed on IDEAS
    4. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Dojin, 2021. "The Valuation of Soil Health Improvements and Ecosystem Services among Crop Producers in the U.S," 2021 Annual Meeting, August 1-3, Austin, Texas 314032, Agricultural and Applied Economics Association.
    2. Elizabeth Canales & Jason S. Bergtold & Jeffery R. Williams, 2020. "Conservation practice complementarity and timing of on‐farm adoption," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 777-792, September.
    3. Mishra, Bijesh, 2017. "Adoption of Sustainable Agricultural Practices among Kentucky Farmers and Their Perception about Farm Sustainability," MPRA Paper 113798, University Library of Munich, Germany.
    4. Sawadgo, Wendiam & Plastina, Alejandro, 2021. "Do cost-share programs increase cover crop use? Empirical evidence from Iowa," ISU General Staff Papers 202101010800001084, Iowa State University, Department of Economics.
    5. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    6. Peter L. Stenberg & Mitchell Morehart, 2012. "The existence of pent-up demand for rural broadband services: an exploration," Chapters, in: Charlie Karlsson & Börje Johansson & Roger R. Stough (ed.), Entrepreneurship, Social Capital and Governance, chapter 9, pages 221-240, Edward Elgar Publishing.
    7. Valbuena, Diego & Tui, Sabine Homann-Kee & Erenstein, Olaf & Teufel, Nils & Duncan, Alan & Abdoulaye, Tahirou & Swain, Braja & Mekonnen, Kindu & Germaine, Ibro & Gérard, Bruno, 2015. "Identifying determinants, pressures and trade-offs of crop residue use in mixed smallholder farms in Sub-Saharan Africa and South Asia," Agricultural Systems, Elsevier, vol. 134(C), pages 107-118.
    8. Olson, Kent & Gauto, Victor & Erenstein, Olaf & Teufel, Nils & Swain, Braja & Tui, Sabine Homann-Kee & Duncan, Alan, 2021. "Estimating Farmers’ Internal Value of Crop Residues in Smallholder Crop-Livestock Systems: A South Asia Case Study," 2021 Conference, August 17-31, 2021, Virtual 315188, International Association of Agricultural Economists.
    9. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    10. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    11. Nelson Mango & Clifton Makate & Lulseged Tamene & Powell Mponela & Gift Ndengu, 2018. "Adoption of Small-Scale Irrigation Farming as a Climate-Smart Agriculture Practice and Its Influence on Household Income in the Chinyanja Triangle, Southern Africa," Land, MDPI, vol. 7(2), pages 1-19, April.
    12. Senthold Asseng & David Pannell, 2013. "Adapting dryland agriculture to climate change: Farming implications and research and development needs in Western Australia," Climatic Change, Springer, vol. 118(2), pages 167-181, May.
    13. Mudaca, Joao Daniel & Tsuchiya, Toshiyuki & Yamada, Masaaki & Onwona-Agyeman, Siaw, 2015. "Household participation in Payments for Ecosystem Services: A case study from Mozambique," Forest Policy and Economics, Elsevier, vol. 55(C), pages 21-27.
    14. Riffat Ara Zannat Tama & Md Mahmudul Hoque & Ying Liu & Mohammad Jahangir Alam & Mark Yu, 2023. "An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh," Agriculture, MDPI, vol. 13(2), pages 1-22, February.
    15. Medwid, Laura J. & Lambert, Dayton M. & Clark, Christopher D. & Hawkins, Shawn A. & McClellan, Hannah A., 2016. "Estimating Soil Loss Abatement Curves with Primary Survey Data and Hydrologic Models: An Empirical Example for Livestock Production in an East Tennessee Watershed," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230052, Southern Agricultural Economics Association.
    16. James Wangu & Ellen Mangnus & A. C. M. (Guus) van Westen, 2021. "Recognizing Determinants to Smallholders’ Market Orientation and Marketing Arrangements: Building on a Case of Dairy Farming in Rural Kenya," Land, MDPI, vol. 10(6), pages 1-16, May.
    17. Caroline Roussy & Aude Ridier & Karim Chaïb, 2014. "Adoption d’innovations par les agriculteurs : rôle des perceptions et des préférences," Post-Print hal-01123427, HAL.
    18. Mitchell, Paul D., 2011. "Economic Assessment of the Benefits of Chloro-s-triazine Herbicides to U.S. Corn, Sorghum, and Sugarcane Producers," Staff Paper Series 564, University of Wisconsin, Agricultural and Applied Economics.
    19. Wollni, Meike & Andersson, Camilla, 2014. "Spatial patterns of organic agriculture adoption: Evidence from Honduras," Ecological Economics, Elsevier, vol. 97(C), pages 120-128.
    20. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:6:p:124-:d:239783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.