IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v8y2018i7p94-d154564.html
   My bibliography  Save this article

Satellite and Proximal Sensing to Estimate the Yield and Quality of Table Grapes

Author

Listed:
  • Evangelos Anastasiou

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

  • Athanasios Balafoutis

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
    Institute for Bio-Economy & Agri-Technology, Centre of Research & Technology Hellas, Dimarchou Georgiadou 118, 38221 Volos, Greece)

  • Nikoleta Darra

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

  • Vasileios Psiroukis

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

  • Aikaterini Biniari

    (Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

  • George Xanthopoulos

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

  • Spyros Fountas

    (Department of Natural Resources Management & Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece)

Abstract

Table grapes are a crop with high nutritional value that need to be monitored often to achieve high yield and quality. Non-destructive methods, such as satellite and proximal sensing, are widely used to estimate crop yield and quality characteristics, and spectral vegetation indices (SVIs) are commonly used to present site specific information. The aim of this study was the assessment of SVIs derived from satellite and proximal sensing at different growth stages of table grapes from veraison to harvest. The study took place in a commercial table grape vineyard ( Vitis vinifera cv. Thompson Seedless) during three successive cultivation years (2015–2017). The Normalized Difference Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI) were calculated by employing satellite imagery (Landsat 8) and proximal sensing (Crop Circle ACS 470) to assess the yield and quality characteristics of table grapes. The SVIs exhibited different degrees of correlations with different measurement dates and sensing methods. Satellite-based GNDVI at harvest presented higher correlations with crop quality characteristics ( r = 0.522 for berry diameter, r = 0.537 for pH, r = 0.629 for berry deformation) compared with NDVI. Proximal-based GNDVI at the middle of veraison presented higher correlations compared with NDVI ( r = −0.682 for berry diameter, r = −0.565 for berry deformation). Proximal sensing proved to be more accurate in terms of table grape yield and quality characteristics compared to satellite sensing.

Suggested Citation

  • Evangelos Anastasiou & Athanasios Balafoutis & Nikoleta Darra & Vasileios Psiroukis & Aikaterini Biniari & George Xanthopoulos & Spyros Fountas, 2018. "Satellite and Proximal Sensing to Estimate the Yield and Quality of Table Grapes," Agriculture, MDPI, vol. 8(7), pages 1-17, June.
  • Handle: RePEc:gam:jagris:v:8:y:2018:i:7:p:94-:d:154564
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/8/7/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/8/7/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Er-Raki, S. & Rodriguez, J.C. & Garatuza-Payan, J. & Watts, C.J. & Chehbouni, A., 2013. "Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index," Agricultural Water Management, Elsevier, vol. 122(C), pages 12-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Vélez & Enrique Barajas & Pilar Blanco & José Antonio Rubio & David Castrillo, 2021. "Spatio-Temporal Analysis of Satellite Imagery (NDVI) to Identify Terroir and Vineyard Yeast Differences according to Appellation of Origin (AOP) and Biogeographic Origin," J, MDPI, vol. 4(3), pages 1-13, June.
    2. Yorghos Voutos & Phivos Mylonas & John Katheniotis & Anastasia Sofou, 2019. "A Survey on Intelligent Agricultural Information Handling Methodologies," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    3. Mohamad M. Awad, 2019. "Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
    4. Dimitrios Tassopoulos & Dionissios Kalivas & Rigas Giovos & Nestor Lougkos & Anastasia Priovolou, 2021. "Sentinel-2 Imagery Monitoring Vine Growth Related to Topography in a Protected Designation of Origin Region," Agriculture, MDPI, vol. 11(8), pages 1-20, August.
    5. Rigas Giovos & Dimitrios Tassopoulos & Dionissios Kalivas & Nestor Lougkos & Anastasia Priovolou, 2021. "Remote Sensing Vegetation Indices in Viticulture: A Critical Review," Agriculture, MDPI, vol. 11(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jefferson Brooks & Ana Rivera & Miguel Chen Austin & Nathalia Tejedor-Flores, 2022. "A Machine Learning-Based Approach to Estimate Energy Flows of the Mangrove Forest: The Case of Panama Bay," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    2. Campos, Isidro & Balbontín, Claudio & González-Piqueras, Jose & González-Dugo, Maria P. & Neale, Christopher M.U. & Calera, Alfonso, 2016. "Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards," Agricultural Water Management, Elsevier, vol. 165(C), pages 141-152.
    3. Shao, Guomin & Han, Wenting & Zhang, Huihui & Liu, Shouyang & Wang, Yi & Zhang, Liyuan & Cui, Xin, 2021. "Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices," Agricultural Water Management, Elsevier, vol. 252(C).
    4. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
    6. Amazirh, Abdelhakim & Merlin, Olivier & Er-Raki, Salah & Bouras, Elhoussaine & Chehbouni, Abdelghani, 2021. "Implementing a new texture-based soil evaporation reduction coefficient in the FAO dual crop coefficient method," Agricultural Water Management, Elsevier, vol. 250(C).
    7. Shao, Guomin & Han, Wenting & Zhang, Huihui & Zhang, Liyuan & Wang, Yi & Zhang, Yu, 2023. "Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods," Agricultural Water Management, Elsevier, vol. 276(C).
    8. Diarra, A. & Jarlan, L. & Er-Raki, S. & Le Page, M. & Aouade, G. & Tavernier, A. & Boulet, G. & Ezzahar, J. & Merlin, O. & Khabba, S., 2017. "Performance of the two-source energy budget (TSEB) model for the monitoring of evapotranspiration over irrigated annual crops in North Africa," Agricultural Water Management, Elsevier, vol. 193(C), pages 71-88.
    9. Ouaadi, Nadia & Jarlan, Lionel & Khabba, Saïd & Le Page, Michel & Chakir, Adnane & Er-Raki, Salah & Frison, Pierre-Louis, 2023. "Are the C-band backscattering coefficient and interferometric coherence suitable substitutes of NDVI for the monitoring of the FAO-56 crop coefficient?," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    11. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    12. Rozenstein, Offer & Haymann, Nitai & Kaplan, Gregoriy & Tanny, Josef, 2018. "Estimating cotton water consumption using a time series of Sentinel-2 imagery," Agricultural Water Management, Elsevier, vol. 207(C), pages 44-52.
    13. Consoli, S. & Vanella, D., 2014. "Mapping crop evapotranspiration by integrating vegetation indices into a soil water balance model," Agricultural Water Management, Elsevier, vol. 143(C), pages 71-81.
    14. Yang, Xiaolin & Jin, Xinnan & Chu, Qingquan & Pacenka, Steven & Steenhuis, Tammo S., 2021. "Impact of climate variation from 1965 to 2016 on cotton water requirements in North China Plain," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    16. Consoli, S. & Licciardello, F. & Vanella, D. & Pasotti, L. & Villani, G. & Tomei, F., 2016. "Testing the water balance model criteria using TDR measurements, micrometeorological data and satellite-based information," Agricultural Water Management, Elsevier, vol. 170(C), pages 68-80.
    17. Jin, Xiuliang & Yang, Guijun & Xue, Xuzhang & Xu, Xingang & Li, Zhenhai & Feng, Haikuan, 2017. "Validation of two Huanjing-1A/B satellite-based FAO-56 models for estimating winter wheat crop evapotranspiration during mid-season," Agricultural Water Management, Elsevier, vol. 189(C), pages 27-38.
    18. Valentín, Francisco & Sánchez, Juan Manuel & Martínez-Moreno, Alejandro & Intrigliolo, Diego S. & Buesa, Ignacio & López-Urrea, Ramón, 2023. "Using on-the-ground surface energy balance to monitor vine water status and evapotranspiration under deficit irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 281(C).
    19. Rallo, G. & Paço, T.A. & Paredes, P. & Puig-Sirera, À. & Massai, R. & Provenzano, G. & Pereira, L.S., 2021. "Updated single and dual crop coefficients for tree and vine fruit crops," Agricultural Water Management, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:8:y:2018:i:7:p:94-:d:154564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.