IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v7y2017i9p74-d111026.html
   My bibliography  Save this article

Low-Input Maize-Based Cropping Systems Implementing IWM Match Conventional Maize Monoculture Productivity and Weed Control

Author

Listed:
  • Guillaume Adeux

    (Université de Toulouse—École d’ingénieurs de Purpan, UMR 1248 AGIR—75, voie du TOEC, BP 57611, F-31076 Toulouse, France
    Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France)

  • Simon Giuliano

    (Université de Toulouse—École d’ingénieurs de Purpan, UMR 1248 AGIR—75, voie du TOEC, BP 57611, F-31076 Toulouse, France)

  • Stéphane Cordeau

    (Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France)

  • Jean-Marie Savoie

    (Université de Toulouse—École d’ingénieurs de Purpan, UMR 1201 DYNAFOR—75, voie du TOEC, BP 57611, F-31076 Toulouse, France)

  • Lionel Alletto

    (Université de Toulouse—École d’ingénieurs de Purpan, UMR 1248 AGIR—75, voie du TOEC, BP 57611, F-31076 Toulouse, France)

Abstract

Conventional Maize Monoculture (MM), a dominant Cropping System in South-Western France, is now questioned for environmental reasons (nitrate leaching, pesticide use and excessive irrigation). Three low-input Cropping Systems (CS) using diverse weeding strategies (MM LI , a Low-Input MM implementing ploughing, a combination of on-row spraying and in-between row cultivation and cover crops; MM CT , Conservation Tillage MM implementing chemical control and cover crops; Maize-MSW, maize managed similar to MM LI but rotated with soybean & wheat) were compared to a reference system (MM Conv , a conventional MM with tillage and a high quantity of inputs). Potential of Infestation of weeds (PI), weed biomass and crop production of these CS were compared during the first five years after their establishment. Yields were also assessed in weed-free zones hand-weeded weekly in 2014 and 2015. Weed communities did not drastically differ among CS. PI and weed biomass were higher in MM CT , especially for Echinochloa crus-galli (L.) P.Beauv. and were comparable between MM Conv , MM LI and Maize-MSW. Analysis of covariance between CS and weed biomass did not reveal a significant interaction, suggesting that weed biomass affected yield similarly among the CS. Comparison between weedy and weed-free zones suggested that weeds present at maize maturity negatively affected yields to the same extent for all four CS, despite having different weed biomasses. Grain yields in MM Conv (11.3 ± 1.1 t ha −1 ) and MM LI (10.6 ± 2.3 t ha −1 ) were similar and higher than in MM CT (8.2 ± 1.9 t ha −1 . Similar yields, weed biomasses and PI suggest that MM LI and Maize-MSW are interesting alternatives to conventional MM in terms of weed control and maize productivity and should be transferred to farmers to test their feasibility under wider, farm-scale conditions.

Suggested Citation

  • Guillaume Adeux & Simon Giuliano & Stéphane Cordeau & Jean-Marie Savoie & Lionel Alletto, 2017. "Low-Input Maize-Based Cropping Systems Implementing IWM Match Conventional Maize Monoculture Productivity and Weed Control," Agriculture, MDPI, vol. 7(9), pages 1-17, September.
  • Handle: RePEc:gam:jagris:v:7:y:2017:i:9:p:74-:d:111026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/7/9/74/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/7/9/74/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gholamhoseini, M. & AghaAlikhani, M. & Modarres Sanavy, S.A.M. & Mirlatifi, S.M., 2013. "Interactions of irrigation, weed and nitrogen on corn yield, nitrogen use efficiency and nitrate leaching," Agricultural Water Management, Elsevier, vol. 126(C), pages 9-18.
    2. Cameron M. Pittelkow & Xinqiang Liang & Bruce A. Linquist & Kees Jan van Groenigen & Juhwan Lee & Mark E. Lundy & Natasja van Gestel & Johan Six & Rodney T. Venterea & Chris van Kessel, 2015. "Productivity limits and potentials of the principles of conservation agriculture," Nature, Nature, vol. 517(7534), pages 365-368, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alletto, Lionel & Vandewalle, Aline & Debaeke, Philippe, 2022. "Crop diversification improves cropping system sustainability: An 8-year on-farm experiment in South-Western France," Agricultural Systems, Elsevier, vol. 200(C).
    2. Maé Guinet & Guillaume Adeux & Stéphane Cordeau & Emeric Courson & Romain Nandillon & Yaoyun Zhang & Nicolas Munier-Jolain, 2023. "Fostering temporal crop diversification to reduce pesticide use," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    3. Nana Chen & Xin Zhao & Shuxian Dou & Aixing Deng & Chengyan Zheng & Tiehua Cao & Zhenwei Song & Weijian Zhang, 2023. "The Tradeoff between Maintaining Maize ( Zea mays L.) Productivity and Improving Soil Quality under Conservation Tillage Practice in Semi-Arid Region of Northeast China," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
    4. J. Carl Ureta & Lucas Clay & Marzieh Motallebi & Joan Ureta, 2020. "Quantifying the Landscape’s Ecological Benefits—An Analysis of the Effect of Land Cover Change on Ecosystem Services," Land, MDPI, vol. 10(1), pages 1-20, December.
    5. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    6. Anantha, K.H. & Garg, Kaushal K. & Barron, Jennie & Dixit, Sreenath & Venkataradha, A. & Singh, Ramesh & Whitbread, Anthony M., 2021. "Impact of best management practices on sustainable crop production and climate resilience in smallholder farming systems of South Asia," Agricultural Systems, Elsevier, vol. 194(C).
    7. Luncheng You & Gerard H. Ros & Yongliang Chen & Qi Shao & Madaline D. Young & Fusuo Zhang & Wim de Vries, 2023. "Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    9. Katharina Helming & Katrin Daedlow & Bernd Hansjürgens & Thomas Koellner, 2018. "Assessment and Governance of Sustainable Soil Management," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    10. Heena Panchasara & Nahidul Hoque Samrat & Nahina Islam, 2021. "Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
    11. Bacar Abdallah Abderemane & Malika Fakiri & Omar Idrissi & Aziz Baidani & Abdelmonim Zeroual & Elisabetta Mazzucotelli & Hakan Özkan & Ilaria Marcotuli & Agata Gadaleta & Chafika Houasli, 2023. "Evaluation of the Productive Potential of a World Collection of Chickpeas ( Cicer arietinum L.) for the Initiation of Breeding Programs for Adaptation to Conservation Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    12. Lalani, Baqir & Aminpour, Payam & Gray, Steven & Williams, Meredith & Büchi, Lucie & Haggar, Jeremy & Grabowski, Philip & Dambiro, José, 2021. "Mapping farmer perceptions, Conservation Agriculture practices and on-farm measurements: The role of systems thinking in the process of adoption," Agricultural Systems, Elsevier, vol. 191(C).
    13. Kumara, T.M. Kiran & Kandpal, Ankita & Pal, Suresh, 2019. "Determinants and Impacts of Conservation Agriculture in South Asia: A Meta-Analysis of the Evidences," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 74(03), March.
    14. Tambo, J. & Mockshell, J., 2018. "Differential impacts of conservation agriculture technology options on household welfare in sub-Saharan Africa," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277035, International Association of Agricultural Economists.
    15. Dazhuan Ge & Hualou Long & Li Ma & Yingnan Zhang & Shuangshuang Tu, 2017. "Analysis Framework of China’s Grain Production System: A Spatial Resilience Perspective," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    16. Dardonville, Manon & Legrand, Baptiste & Clivot, Hugues & Bernardin, Claire & Bockstaller, Christian & Therond, Olivier, 2022. "Assessment of ecosystem services and natural capital dynamics in agroecosystems," Ecosystem Services, Elsevier, vol. 54(C).
    17. Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.
    18. Adam M. Komarek, 2018. "Conservation agriculture in western China increases productivity and profits without decreasing resilience," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1251-1262, October.
    19. Haowei Ni & Han Hu & Constantin M. Zohner & Weigen Huang & Ji Chen & Yishen Sun & Jixian Ding & Jizhong Zhou & Xiaoyuan Yan & Jiabao Zhang & Yuting Liang & Thomas W. Crowther, 2024. "Effects of winter soil warming on crop biomass carbon loss from organic matter degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Somasundaram Jayaraman & Yash P. Dang & Anandkumar Naorem & Kathryn L. Page & Ram C. Dalal, 2021. "Conservation Agriculture as a System to Enhance Ecosystem Services," Agriculture, MDPI, vol. 11(8), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:7:y:2017:i:9:p:74-:d:111026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.