Optimal Drought Index Selection for Soil Moisture Monitoring at Multiple Depths in China’s Agricultural Regions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhou, Keke & Li, Jianzhu & Zhang, Ting & Kang, Aiqing, 2021. "The use of combined soil moisture data to characterize agricultural drought conditions and the relationship among different drought types in China," Agricultural Water Management, Elsevier, vol. 243(C).
- Samaneh Zormand & Reza Jafari & Saeed Soltani Koupaei, 2017. "Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 757-777, March.
- Laibao Liu & Lukas Gudmundsson & Mathias Hauser & Dahe Qin & Shuangcheng Li & Sonia I. Seneviratne, 2020. "Soil moisture dominates dryness stress on ecosystem production globally," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chhanda Ruj & Aloke Majumdar & Somnath Ghosal, 2022. "Political ecology and hydrosocial relation: a study on drought and associated migration in a semi-arid district of West Bengal, India," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 709-734, December.
- Wei Wei & Jiping Wang & Libang Ma & Xufeng Wang & Binbin Xie & Junju Zhou & Haoyan Zhang, 2024. "Global Drought-Wetness Conditions Monitoring Based on Multi-Source Remote Sensing Data," Land, MDPI, vol. 13(1), pages 1-19, January.
- Riao, Dao & Guga, Suri & Bao, Yongbin & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan, 2023. "Non-overlap of suitable areas of agro-climatic resources and main planting areas is the main reason for potato drought disaster in Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 275(C).
- Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
- Cui, Yi & Zhou, Yuliang & Jin, Juliang & Jiang, Shangming & Wu, Chengguo & Ning, Shaowei, 2023. "Spatiotemporal characteristics and obstacle factors identification of agricultural drought disaster risk: A case study across Anhui Province, China," Agricultural Water Management, Elsevier, vol. 289(C).
- Zi-Ce Ma & Peng Sun & Qiang Zhang & Yu-Qian Hu & Wei Jiang, 2021. "Characterization and Evaluation of MODIS-Derived Crop Water Stress Index (CWSI) for Monitoring Drought from 2001 to 2017 over Inner Mongolia," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
- Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Zhang, Siyao & Li, Jianzhu & Zhang, Ting & Feng, Ping & Liu, Weilin, 2024. "Response of vegetation to SPI and driving factors in Chinese mainland," Agricultural Water Management, Elsevier, vol. 291(C).
- Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
- Guo, Youzheng & Ma, Yingjun & Ding, Changjun & Di, Nan & Liu, Yang & Tan, Jianbiao & Zhang, Shusen & Yu, Weichen & Gao, Guixi & Duan, Jie & Xi, Benye & Li, Ximeng, 2023. "Plant hydraulics provide guidance for irrigation management in mature polar plantation," Agricultural Water Management, Elsevier, vol. 275(C).
- Li, Bingbing & Yang, Yi & Li, Zhi, 2021. "Combined effects of multiple factors on spatiotemporally varied soil moisture in China’s Loess Plateau," Agricultural Water Management, Elsevier, vol. 258(C).
- Ouyang, Lei & Lu, Longwei & Wang, Chunlin & Li, Yanqiong & Wang, Jingyi & Zhao, Xiuhua & Gao, Lei & Zhu, Liwei & Ni, Guangyan & Zhao, Ping, 2022. "A 14-year experiment emphasizes the important role of heat factors in regulating tree transpiration, growth, and water use efficiency of Schima superba in South China," Agricultural Water Management, Elsevier, vol. 273(C).
- Haibo Lu & Zhangcai Qin & Shangrong Lin & Xiuzhi Chen & Baozhang Chen & Bin He & Jing Wei & Wenping Yuan, 2022. "Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
- Arias, María & Notarnicola, Claudia & Campo-Bescós, Miguel Ángel & Arregui, Luis Miguel & Álvarez-Mozos, Jesús, 2023. "Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields," Agricultural Water Management, Elsevier, vol. 287(C).
- Jing Peng & Fuqiang Yang & Li Dan & Xiba Tang, 2022. "Estimation of China’s Contribution to Global Greening over the Past Three Decades," Land, MDPI, vol. 11(3), pages 1-16, March.
- Ariane Mirabel & Martin P. Girardin & Juha Metsaranta & Danielle Way & Peter B. Reich, 2023. "Increasing atmospheric dryness reduces boreal forest tree growth," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Zhu, Jie & Chen, Shanghong & Zhang, Qingwen & Mei, Xurong, 2023. "Multi-year vertical and life cycle impacts of C-N management on soil moisture regimes," Agricultural Water Management, Elsevier, vol. 290(C).
- Zheng, Han & Sun, Yuchen & Bao, Han & Niu, Panpan & Jin, Zhao & Niu, Zhongen, 2024. "Drought effects on evapotranspiration and energy exchange over a rain-fed maize cropland in the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 293(C).
- Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
More about this item
Keywords
drought index; soil moisture; soil depth; croplands; agricultural drought;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:4:p:423-:d:1593111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.