IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i3p305-d1580566.html
   My bibliography  Save this article

Framework for Apple Phenotype Feature Extraction Using Instance Segmentation and Edge Attention Mechanism

Author

Listed:
  • Zichong Wang

    (China Agricultural University, Beijing 100083, China)

  • Weiyuan Cui

    (China Agricultural University, Beijing 100083, China
    National School of Development, Peking University, Beijing 100871, China)

  • Chenjia Huang

    (China Agricultural University, Beijing 100083, China
    Faculty of Humanities, China University of Political Science and Law, Beijing 102249, China)

  • Yuhao Zhou

    (China Agricultural University, Beijing 100083, China)

  • Zihan Zhao

    (China Agricultural University, Beijing 100083, China
    National School of Development, Peking University, Beijing 100871, China)

  • Yuchen Yue

    (China Agricultural University, Beijing 100083, China
    National School of Development, Peking University, Beijing 100871, China)

  • Xinrui Dong

    (China Agricultural University, Beijing 100083, China
    School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China)

  • Chunli Lv

    (China Agricultural University, Beijing 100083, China)

Abstract

A method for apple phenotypic feature extraction and growth anomaly identification based on deep learning and natural language processing technologies is proposed in this paper, aiming to enhance the accuracy of apple quality detection and anomaly prediction in agricultural production. This method integrates instance segmentation, edge perception mechanisms, attention mechanisms, and multimodal data fusion to accurately extract an apple’s phenotypic features, such as its shape, color, and surface condition, while identifying potential anomalies which may arise during the growth process. Specifically, the edge transformer segmentation network is employed to combine deep convolutional networks (CNNs) with the Transformer architecture, enhancing feature extraction and modeling long-range dependencies across different regions of an image. The edge perception mechanism improves segmentation accuracy by focusing on the boundary regions of the apple, particularly in the case of complex shapes or surface damage. Additionally, the natural language processing (NLP) module analyzes agricultural domain knowledge, such as planting records and meteorological data, providing insights into potential causes of growth anomalies and enabling more accurate predictions. The experimental results demonstrate that the proposed method significantly outperformed traditional models across multiple metrics. Specifically, in the apple phenotypic feature extraction task, the model achieved exceptional performance, with accuracy of 0.95, recall of 0.91, precision of 0.93, and mean intersection over union (mIoU) of 0.92. Furthermore, in the growth anomaly identification task, the model also performed excellently, with a precision of 0.93, recall of 0.90, accuracy of 0.91, and mIoU of 0.89, further validating its efficiency and robustness in handling complex growth anomaly scenarios. The method’s integration of image data with agricultural knowledge provides a comprehensive approach to both apple quality detection and growth anomaly prediction, offering reliable decision support for agricultural production. The proposed method, by integrating image data with agricultural domain knowledge, provides precise decision support for agricultural production, not only improving the efficiency and accuracy of apple quality detection but also offering reliable technical assurance for agricultural economic analysis.

Suggested Citation

  • Zichong Wang & Weiyuan Cui & Chenjia Huang & Yuhao Zhou & Zihan Zhao & Yuchen Yue & Xinrui Dong & Chunli Lv, 2025. "Framework for Apple Phenotype Feature Extraction Using Instance Segmentation and Edge Attention Mechanism," Agriculture, MDPI, vol. 15(3), pages 1-23, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:305-:d:1580566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/3/305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/3/305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2024. "Bayesian improved cross entropy method with categorical mixture models for network reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    2. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    3. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    4. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    5. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    6. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    7. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    8. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    9. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    10. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    11. Anastasia Spiliopoulou & Ioannis Papamichail & Markos Papageorgiou & Yannis Tyrinopoulos & John Chrysoulakis, 2017. "Macroscopic traffic flow model calibration using different optimization algorithms," Operational Research, Springer, vol. 17(1), pages 145-164, April.
    12. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    13. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    14. Zhang, Yali & Shang, Pengjian, 2019. "Multivariate multiscale distribution entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 72-80.
    15. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    16. A. Gouda & T. Szántai, 2008. "Rare event probabilities in stochastic networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 441-461, December.
    17. Liang Huang & Juanjuan Zhu & Mulan Qiu & Xiaoxiang Li & Shasha Zhu, 2022. "CA-BASNet: A Building Extraction Network in High Spatial Resolution Remote Sensing Images," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    18. Reuven Y. Rubinstein, 2006. "How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 5-51, March.
    19. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    20. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:305-:d:1580566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.