IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2024i1p19-d1552900.html
   My bibliography  Save this article

Modeling and Simulation of Reel Motion in a Foxtail Millet Combine Harvester

Author

Listed:
  • Zhenwei Liang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jia Liu

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Deyong Yang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Kangcheng Ouyang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Due to the high plant height, heavy ear, and easy forward tilt of millet during harvesting, the reel of a traditional combine harvester is often difficult to adapt to the special growth characteristics of millet, resulting in serious grain loss. Therefore, optimizing the design of the reel is important to improve the harvesting efficiency of millet and reduce the grain header loss. In order to determine the optimal reel speed ratio(λ), kinematics simulation experiments and analysis were carried out under different combinations of forward speed and reel revolution speed. The results showed that the supporting effect of the reel is insufficient when λ ≤ 1, and the trochoidal trajectory of the reel can provide a backward driving force when λ > 1, the optimum speed ratio of the reel should be controlled between 1.5 and 1.6. Field experiments results showed that the grain header loss rate was the lowest (0.9%) when λ = 1.6. This study provides key guidance for the adjustment of the combine harvester, effectively reducing the grain header loss rate in harvesting millet, and improving the harvesting efficiency.

Suggested Citation

  • Zhenwei Liang & Jia Liu & Deyong Yang & Kangcheng Ouyang, 2024. "Modeling and Simulation of Reel Motion in a Foxtail Millet Combine Harvester," Agriculture, MDPI, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:gam:jagris:v:15:y:2024:i:1:p:19-:d:1552900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/1/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/1/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fazheng Wang & Yanbin Liu & Yaoming Li & Kuizhou Ji, 2023. "Research and Experiment on Variable-Diameter Threshing Drum with Movable Radial Plates for Combine Harvester," Agriculture, MDPI, vol. 13(8), pages 1-16, July.
    2. Zheng Ma & Zelin Zhang & Zhaohui Zhang & Zhiqiang Song & Yanbin Liu & Yaoming Li & Lizhang Xu, 2023. "Durable Testing and Analysis of a Cleaning Sieve Based on Vibration and Strain Signals," Agriculture, MDPI, vol. 13(12), pages 1-22, December.
    3. Ranbing Yang & Zhichao Wang & Shuqi Shang & Jian Zhang & Yiren Qing & Xiantao Zha, 2022. "The Design and Experimentation of EVPIVS-PID Harvesters’ Header Height Control System Based on Sensor Ground Profiling Monitoring," Agriculture, MDPI, vol. 12(2), pages 1-24, February.
    4. Tao Zhang & Yaoming Li & Guoliang You, 2023. "Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    5. Min Zhang & Gang Li & Yao Yang & Mei Jin & Tao Jiang, 2023. "Design and Parameter Optimization of Variable Speed Reel for Oilseed Rape Combine Harvester," Agriculture, MDPI, vol. 13(8), pages 1-13, July.
    6. Zhao Xue & Jun Fu & Qiankun Fu & Xiaokang Li & Zhi Chen, 2023. "Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach," Agriculture, MDPI, vol. 13(10), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangzhui Wang & Kexin Que & Zhong Tang & Meiyan Sun & Yi Lian & Haoyang Wang, 2024. "Multivariate Structural Vibration Coupling Response of the Self-Propelled Straw Pickup Baler Under Time-Varying Loads," Agriculture, MDPI, vol. 14(11), pages 1-28, November.
    2. Zhenwei Liang & Yongqi Qin & Zhan Su, 2024. "Establishment of a Feeding Rate Prediction Model for Combine Harvesters," Agriculture, MDPI, vol. 14(4), pages 1-15, April.
    3. Fengyun Xie & Gang Li & Hui Liu & Enguang Sun & Yang Wang, 2024. "Advancing Early Fault Diagnosis for Multi-Domain Agricultural Machinery Rolling Bearings through Data Enhancement," Agriculture, MDPI, vol. 14(1), pages 1-16, January.
    4. Nicolae-Valentin Vlăduț & Nicoleta Ungureanu & Sorin-Ştefan Biriş & Iulian Voicea & Florin Nenciu & Iuliana Găgeanu & Dan Cujbescu & Lorena-Diana Popa & Sorin Boruz & Gheorghe Matei & Adam Ekielski & , 2023. "Research on the Identification of Some Optimal Threshing and Separation Regimes in the Axial Flow Apparatus," Agriculture, MDPI, vol. 13(4), pages 1-17, April.
    5. Shiguo Wang & Bin Li & Shuren Chen & Zhong Tang & Weiwei Zhou & Xiaohu Guo, 2024. "Design and Performance Test of Soybean Profiling Header Suitable for Harvesting Bottom Pods on Film," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    6. Linfeng Chen & Lei Zhang & Le Li & Lihua Zhang, 2024. "Design and Experiment of a Low-Damage Threshing Drum for Corn with Stepless Taper Adjustment," Agriculture, MDPI, vol. 15(1), pages 1-18, December.
    7. Jie Ma & Qinghao He & Duanyang Geng & Lin Niu & Yipeng Cui & Qiming Yu & Jianning Yin & Yang Wang & Lei Ni, 2024. "Research and Experimentation on Sparse–Dense Interphase Curved-Tooth Sorghum Threshing Technology," Agriculture, MDPI, vol. 14(10), pages 1-15, October.
    8. Lin Li & Yalei Xu & Zhiguo Pan & Huan Zhang & Tianfeng Sun & Yuming Zhai, 2022. "Design and Experiment of Sweet Potato Up-Film Transplanting Device with a Boat-Bottom Posture," Agriculture, MDPI, vol. 12(10), pages 1-25, October.
    9. Weijian Liu & Xiwen Luo & Shan Zeng & Li Zeng & Zhiqiang Wen, 2022. "The Design and Test of the Chassis of a Triangular Crawler-Type Ratooning Rice Harvester," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    10. Qian Zhang & Qingshan Chen & Wenjie Xu & Lizhang Xu & En Lu, 2024. "Prediction of Feed Quantity for Wheat Combine Harvester Based on Improved YOLOv5s and Weight of Single Wheat Plant without Stubble," Agriculture, MDPI, vol. 14(8), pages 1-29, July.
    11. Kittikhun Prasertkan & Prathuang Usaborisut & Krittatee Jindawong & Kiatkong Suwannakij & Anusorn Iamrurksiri, 2024. "Study on parameters affecting vibration in height adjustment of a combine harvester header model," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 70(2), pages 92-103.
    12. Brianda Susana Velázquez-de-Lucio & Jorge Álvarez-Cervantes & María Guadalupe Serna-Díaz & Edna María Hernández-Domínguez & Joselito Medina-Marin, 2023. "The Implementation of Response Surface Methodology and Artificial Neural Networks to Find the Best Germination Conditions for Lycopersicon esculetum Based on Its Phenological Development in a Greenhou," Agriculture, MDPI, vol. 13(12), pages 1-18, November.
    13. Xinzhong Wang & Tianyu Hong & Weiquan Fang & Xingye Chen, 2024. "Optimized Design for Vibration Reduction in a Residual Film Recovery Machine Frame Based on Modal Analysis," Agriculture, MDPI, vol. 14(4), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2024:i:1:p:19-:d:1552900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.