IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1828-d1242267.html
   My bibliography  Save this article

Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device

Author

Listed:
  • Tao Zhang

    (Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang 212013, China
    School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yaoming Li

    (Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Guoliang You

    (Key Laboratory of Modern Agricultural Equipment and Technology, Jiangsu University, Zhenjiang 212013, China
    School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

When processing wet rice, the efficiency of the combine harvester diminishes due to the heightened surface water content of the paddy. To address this, a hot air flow cleaning apparatus was engineered, and the effects of its operational parameters on cleaning performance were investigated. Outlet temperature, fan speed, louver sieve temperature, louver sieve inclination, and eccentric wheel speed were selected as experimental factors, and a single-factor test was carried out, with cleaning loss rate and impurity rate as test indexes. The results of the single-factor test show that louver sieve inclination and eccentric wheel speed had no obvious influence on the cleaning loss rate or impurity rate. The cleaning loss rate decreased with the increase in outlet temperature and louver sieve temperature but increased with the increase in fan speed. The cleaning impurity rate increased with the increase in outlet temperature and louver sieve temperature but decreased with the increase in fan speed. Based on the results of the single-factor test, a central composite rotatable test was adopted to attain the optimal operation parameters of the hot air flow cleaning equipment. Parameters like outlet temperature, fan speed, and louver sieve temperature were established as test factors, with the loss and impurity rates chosen as the evaluation metrics. Optimization using response surface methodology yielded the following parameters: an outlet temperature of 40.7 °C, a fan speed of 1300 rpm, and a louver sieve temperature of 50 °C. Under these conditions, the loss rate was observed to be 0.75% and the impurity rate stood at 1.75%. These findings can guide the design of cleaning mechanisms and the determination of operational parameters.

Suggested Citation

  • Tao Zhang & Yaoming Li & Guoliang You, 2023. "Experimental Study on the Cleaning Performance of Hot Air Flow Cleaning Device," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1828-:d:1242267
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1828/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bangzhui Wang & Kexin Que & Zhong Tang & Meiyan Sun & Yi Lian & Haoyang Wang, 2024. "Multivariate Structural Vibration Coupling Response of the Self-Propelled Straw Pickup Baler Under Time-Varying Loads," Agriculture, MDPI, vol. 14(11), pages 1-28, November.
    2. Zhenwei Liang & Yongqi Qin & Zhan Su, 2024. "Establishment of a Feeding Rate Prediction Model for Combine Harvesters," Agriculture, MDPI, vol. 14(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1828-:d:1242267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.