IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1328-d1453358.html
   My bibliography  Save this article

Screening New Mungbean Varieties for Terminal Drought Tolerance

Author

Listed:
  • Sobia Ikram

    (Institute for Future Farming Systems, Central Queensland University, 631 Ibis Ave., Kawana, QLD 4701, Australia)

  • Surya Bhattarai

    (Institute for Future Farming Systems, Central Queensland University, 631 Ibis Ave., Kawana, QLD 4701, Australia)

  • Kerry B. Walsh

    (Institute for Future Farming Systems, Central Queensland University, 631 Ibis Ave., Kawana, QLD 4701, Australia)

Abstract

Rainfed mungbean crops in Queensland Australia frequently experience terminal drought (drought stress in the final stages of reproductive development), highlighting the importance of drought-tolerant varieties for sustainable mungbean production. Given there is limited information on the relative drought tolerance of current mungbean varieties in Australia, the study of genetic variations and mechanisms of drought tolerance in summer mungbean can provide a basis for developing drought-tolerant mungbean varieties. This study evaluated the physiological, biochemical, and phenological traits underpinning yield attributes associated with drought tolerance in selected mungbean varieties. Four new mungbean varieties (AVTMB#1 to 4) and the Australian commercial line (Jade-AU) were grown in tall (75 cm) polyvinyl chloride (PVC) lysimeters where drought stress was imposed at the early flowering stage (R1) and maintained until maturity. Drought stress significantly impacted all the varieties. Averaged across all the varieties, drought stress was associated with a reduction in stomatal conductance (g s ) and photosynthetic rate (A sat ) by 78% and 86%, respectively, compared to well-watered plants. Internal carbon dioxide concentration (Ci), the effective quantum yield of photosystem II (ΦPSII) and maximum light-use efficiency of light-acclimated photosystem II (PSII) centres (Fv’/Fm’) were also decreased, while excitation pressure (1-qP) increased with drought treatment. A positive correlation (r = 0.60) existed between seed yield and ΦPSII assessed at R1, while a weak correlation with Fv’/Fm’ (r = 0.24) was observed. Excitation pressure (1-qP) at the R1 stage was negatively correlated with seed yield (r = −0.66). Therefore, leaf fluorescence measures, viz., 1-qP and ΦPSII, were recommended for use in screening mungbean varieties for drought tolerance. The varieties, AVTMB#1 and AVTMB#4, respectively achieved 39 and 38% greater seed yields relative to the commercial variety, Jade-AU, under terminal drought conditions.

Suggested Citation

  • Sobia Ikram & Surya Bhattarai & Kerry B. Walsh, 2024. "Screening New Mungbean Varieties for Terminal Drought Tolerance," Agriculture, MDPI, vol. 14(8), pages 1-21, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1328-:d:1453358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Tezara & V. J. Mitchell & S. D. Driscoll & D. W. Lawlor, 1999. "Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP," Nature, Nature, vol. 401(6756), pages 914-917, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Wu & Zhen Li & Sen Meng & Fei Wu, 2021. "Effects of arbuscular mycorrhizal inoculation on the growth, photosynthesis and antioxidant enzymatic activity of Euonymus maackii Rupr. under gradient water deficit levels," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-16, November.
    2. Xuan Wu & Liang Jiao & Dashi Du & Ruhong Xue & Xingyu Ding & Mengyuan Wei & Peng Zhang, 2022. "Spatial–Temporal Pattern and Influencing Factors of Vegetation Phenology and Net Primary Productivity in the Qilian Mountains of Northwest China," Sustainability, MDPI, vol. 14(21), pages 1-21, November.
    3. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan & Begna, Sultan & Auld, Dick, 2016. "Drought response and yield formation of spring safflower under different water regimes in the semiarid Southern High Plains," Agricultural Water Management, Elsevier, vol. 163(C), pages 354-362.
    4. Hussain, Mubshar & Farooq, Shahid & Hasan, Waseem & Ul-Allah, Sami & Tanveer, Mohsin & Farooq, Muhammad & Nawaz, Ahmad, 2018. "Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives," Agricultural Water Management, Elsevier, vol. 201(C), pages 152-166.
    5. Libing Song & Jiming Jin & Jianqiang He, 2019. "Effects of Severe Water Stress on Maize Growth Processes in the Field," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    6. Mathobo, Rudzani & Marais, Diana & Steyn, Joachim Martin, 2017. "The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 180(PA), pages 118-125.
    7. Niruta Gautam & Mamta Sah & Laxmi Bhandari & Saraswati Aryal & Jyoti Kafle & Sudha Pokharel & Keshav Dhakal, 2021. "BIOCHEMICAL AND PHYSICAL CHANGES DUE TO DROUGHT STRESS IN WHEAT(Triticum aestivum L.)," Tropical Agrobiodiversity (TRAB), Zibeline International Publishing, vol. 2(2), pages 72-76, July.
    8. Aldasoro, Joseba & Larrainzar, Estíbaliz & Arrese-Igor, Cesar, 2019. "Application of anti-transpirants temporarily alleviates the inhibition of symbiotic nitrogen fixation in drought-stressed pea plants," Agricultural Water Management, Elsevier, vol. 213(C), pages 193-199.
    9. Wang, Runyuan & Zhao, Hong & Qi, Yue & Zhao, Funian & Chen, Fei & Ding, Wenkui & Jiang, Jufang & Zhang, Kai & Wang, Heling, 2023. "Onset and severity thresholds of drought impacts on wheat," Agricultural Water Management, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1328-:d:1453358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.