IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1303-d1451928.html
   My bibliography  Save this article

The Impact of Maize Legume Intercropping on Energy Indices and GHG Emissions as a Result of Climate Change

Author

Listed:
  • Kęstutis Romaneckas

    (Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania)

  • Austėja Švereikaitė

    (Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania)

  • Rasa Kimbirauskienė

    (Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania)

  • Aušra Sinkevičienė

    (Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania)

  • Aida Adamavičienė

    (Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania)

  • Algirdas Jasinskas

    (Agriculture Academy, Vytautas Magnus University, Studentu Str. 11, LT-53361 Akademija, Lithuania)

Abstract

Multicropping can solve energy use and GHG balance problems, but the emergence, development, and productivity of such mixed crops are at risk due to the uneven distribution of precipitation. For this reason, investigations were performed at the Experimental Station of Vytautas Magnus University, Lithuania. Single maize crops were compared with Crimson/red clover, Persian clover, and alfalfa intercropped maize. The objective of this study was to evaluate the main energy indices and GHG balance of legume intercropped maize cultivated in humid and arid vegetative conditions. The results showed that, under arid conditions, the quantity of intercrop biomass was about four times lower than that under humid conditions. Humid conditions were less suitable for maize and resulted in about 3–5 t ha −1 less dried biomass from intercrops and about 6 t ha −1 less biomass in single crops than in arid conditions. Due to the higher yield of maize biomass in the arid season, better energy indicators of crops were obtained in arid than humid conditions. The difference between net energy was about 122–123 MJ ha −1 in all treatments, except for the maize crop with intercropped alfalfa, where the difference was 62 MJ ha −1 . All tested technologies were environmentally friendly; the CO 2 equivalent varied between treatments from 804 to 884 kg ha −1 . The uneven distribution of precipitation during the vegetative season provides insight into the improvement of intercropping technologies. Sowing intercrops at the same time as maize could improve their germination but increase the problem of weed spread.

Suggested Citation

  • Kęstutis Romaneckas & Austėja Švereikaitė & Rasa Kimbirauskienė & Aušra Sinkevičienė & Aida Adamavičienė & Algirdas Jasinskas, 2024. "The Impact of Maize Legume Intercropping on Energy Indices and GHG Emissions as a Result of Climate Change," Agriculture, MDPI, vol. 14(8), pages 1-9, August.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1303-:d:1451928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    2. Hoffman, Eric & Cavigelli, Michel A. & Camargo, Gustavo & Ryan, Matthew & Ackroyd, Victoria J. & Richard, Tom L. & Mirsky, Steven, 2018. "Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows," Agricultural Systems, Elsevier, vol. 162(C), pages 89-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    2. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    3. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    4. Vida Dabkienė & Tomas Baležentis & Dalia Štreimikienė, 2022. "Reconciling the micro‐ and macro‐perspective in agricultural energy efficiency analysis for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 149-164, February.
    5. Rasa Kimbirauskienė & Aušra Sinkevičienė & Rokas Jonaitis & Kęstutis Romaneckas, 2023. "Impact of Tillage Intensity on the Development of Faba Bean Cultivation," Sustainability, MDPI, vol. 15(11), pages 1-12, June.
    6. Carlson, Andrea & Greene, Catherine & Raszap Skorbiansky, Sharon & Hitaj, Claudia & Ha, Kim & Cavigelli, Michel & Ferrier, Peyton & McBride, William, 2023. "U.S. Organic Production, Markets, Consumers, and Policy, 2000-21," USDA Miscellaneous 333551, United States Department of Agriculture.
    7. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    8. Monika Komorowska & Marcin Niemiec & Jakub Sikora & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Pavol Findura & Hatice Gurgulu & Joanna Stuglik & Maciej Chowaniak & Atılgan Atılgan, 2022. "Closed-Loop Agricultural Production and Its Environmental Efficiency: A Case Study of Sheep Wool Production in Northwestern Kyrgyzstan," Energies, MDPI, vol. 15(17), pages 1-19, August.
    9. Monika Górska & Marta Daroń, 2021. "Importance of Machine Modernization in Energy Efficiency Management of Manufacturing Companies," Energies, MDPI, vol. 14(24), pages 1-19, December.
    10. Pérez-Neira, David & Schneider, Monika & Armengot, Laura, 2020. "Crop-diversification and organic management increase the energy efficiency of cacao plantations," Agricultural Systems, Elsevier, vol. 177(C).
    11. Eugene P. Law & Sandra Wayman & Christopher J. Pelzer & Steven W. Culman & Miguel I. Gómez & Antonio DiTommaso & Matthew R. Ryan, 2022. "Multi-Criteria Assessment of the Economic and Environmental Sustainability Characteristics of Intermediate Wheatgrass Grown as a Dual-Purpose Grain and Forage Crop," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    12. Egidijus Šarauskis & Vilma Naujokienė & Kristina Lekavičienė & Zita Kriaučiūnienė & Eglė Jotautienė & Algirdas Jasinskas & Raimonda Zinkevičienė, 2021. "Application of Granular and Non-Granular Organic Fertilizers in Terms of Energy, Environmental and Economic Efficiency," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    13. Rita Petlickaitė & Algirdas Jasinskas & Kęstutis Venslauskas & Kęstutis Navickas & Marius Praspaliauskas & Egidijus Lemanas, 2024. "Evaluation of Multi-Crop Biofuel Pellet Properties and the Life Cycle Assessment," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    14. Madara Darguza & Zinta Gaile, 2023. "The Productivity of Crop Rotation Depending on the Included Plants and Soil Tillage," Agriculture, MDPI, vol. 13(9), pages 1-15, September.
    15. Jianzheng Li & Zhongkui Luo & Yingchun Wang & Hu Li & Hongtao Xing & Ligang Wang & Enli Wang & Hui Xu & Chunyu Gao & Tianzhi Ren, 2019. "Optimizing Nitrogen and Residue Management to Reduce GHG Emissions while Maintaining Crop Yield: A Case Study in a Mono-Cropping System of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1303-:d:1451928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.