IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i8p1248-d1444962.html
   My bibliography  Save this article

Simulation and Optimization of the Throttle Releaser in Aerated Irrigation Systems

Author

Listed:
  • Chaoxiang Sun

    (College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
    These authors contributed equally to this work.)

  • Dezhe Wang

    (College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
    These authors contributed equally to this work.)

  • Hailin Liu

    (College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China)

  • Yatao Xiao

    (College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
    Institute of Farmland Irrigation of CAAS, Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China)

  • Wei Guo

    (Institute of Farmland Irrigation of CAAS, Key Laboratory of High-Efficient and Safe Utilization of Agriculture Water Resources, Chinese Academy of Agricultural Sciences, Xinxiang 453003, China)

  • Bing Liu

    (Zhumadian Seed Industry Development Center, Zhumadian 463000, China)

Abstract

Aerated irrigation is an emerging and efficient irrigation technique, and the throttle-squeeze releaser (TS releaser) is a commonly used key component in aerated irrigation devices. However, it has issues such as large bubble size, uneven distribution, and low dissolved-oxygen content in the irrigation water. Given these problems, this study optimized the valve chamber and throat structure of the releaser based on the TS releaser, designing three different types of releasers with W-shaped valve chamber, arc-shaped valve chamber, and multi-throat W-shaped valve chamber. The simulation results, obtained using the Fluent module with grid division in ANSYS 2022, show that high-pressure regions are formed inside the releaser with V-shaped and arc-shaped valve chambers that are detrimental to the formation of microbubbles in high-pressure dissolved-air water, while the fluid pressure reduction and energy dissipation are more balanced inside the releasers with a W-shaped valve chamber. Compared to a single-throat design, the multi-throat design allows high-pressure fluid to enter the valve chamber more uniformly, which aids in maximizing the functionality and performance of the valve chamber. To determine the effects of throat size, outlet size, and valve chamber angle on the pressure field, turbulent flow field, velocity field, and air-phase distribution within the multi-throat W-shaped valve chamber releaser, simulation interaction experiments were conducted. The results showed that the optimized releaser performed best when the throat diameter was 1 mm, the outlet size was 2 mm, and the valve chamber angle was 80°. Finally, a comparative performance evaluation between the conventional TS diffuser and the optimized multi-throat W-valve chamber releaser reveals that the latter achieves a maximum dissolved-oxygen content of 6.36 mg/L in the treated irrigation water, representing an approximately 3.5% improvement over the 6.14 mg/L recorded by the traditional releaser. Furthermore, when considering the thresholds of irrigation flow rates above 950 L/h and dissolved-oxygen levels exceeding 5.9 mg/L, the multi-throat W-valve chamber diffuser exhibits a broader operational range characterized by high flow rates and dissolved-oxygen levels.

Suggested Citation

  • Chaoxiang Sun & Dezhe Wang & Hailin Liu & Yatao Xiao & Wei Guo & Bing Liu, 2024. "Simulation and Optimization of the Throttle Releaser in Aerated Irrigation Systems," Agriculture, MDPI, vol. 14(8), pages 1-19, July.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1248-:d:1444962
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/8/1248/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/8/1248/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    2. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing & Zhao, Ying, 2018. "Crop yield and water use efficiency under aerated irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 158-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenzhen Yu & Chun Wang & Huafen Zou & Hongxuan Wang & Hailiang Li & Haitian Sun & Deshui Yu, 2022. "The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    2. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Huanhuan Zhang & Jinshan Xi & Qi Lv & Junwu Wang & Kun Yu & Fengyun Zhao, 2022. "Effect of Aerated Irrigation on the Growth and Rhizosphere Soil Fungal Community Structure of Greenhouse Grape Seedlings," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    4. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Wang, Yanli & Li, Yuepeng & Sun, Xin & Yang, Ling & Zhang, Fucang, 2021. "Water productivity and seed cotton yield in response to deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    6. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    7. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Yu, Liuyang & Zhao, Xining & Gao, Xiaodong & Siddique, Kadambot H.M., 2020. "Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    9. Zhang, Shaohui & Wang, Haidong & Sun, Xin & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Li, Yuepeng, 2021. "Effects of farming practices on yield and crop water productivity of wheat, maize and potato in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Aijun Guo & Daiwei Jiang & Fanglei Zhong & Xiaojiang Ding & Xiaoyu Song & Qingping Cheng & Yongnian Zhang & Chunlin Huang, 2019. "Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    11. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Wang, Xiukang & Sun, Xin & Yang, Ling & Zhang, Shaohui & Xiang, Youzhen & Zhang, Fucang, 2021. "Crop yield and water productivity under salty water irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 256(C).
    12. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    13. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Xing, Liwen & Wu, Zongjun & Zhang, Yixuan & Wang, Zhihui & Wang, Jiaxin, 2023. "Optimizing nitrogen fertilizer application for achieving high yield with low environmental risks in apple orchard," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Yatao Xiao & Chaoxiang Sun & Dezhe Wang & Huiqin Li & Wei Guo, 2023. "Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    16. Yan Zhu & Huanjie Cai & Libing Song & Xiaowen Wang & Zihui Shang & Yanan Sun, 2020. "Aerated Irrigation of Different Irrigation Levels and Subsurface Dripper Depths Affects Fruit Yield, Quality and Water Use Efficiency of Greenhouse Tomato," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    17. Yu, Liuyang & Gao, Xiaodong & Zhao, Xining, 2020. "Global synthesis of the impact of droughts on crops’ water-use efficiency (WUE): Towards both high WUE and productivity," Agricultural Systems, Elsevier, vol. 177(C).
    18. Sun, Yanan & Duan, Linbo & Zhong, Huayu & Cai, Huanjie & Xu, Jiatun & Li, Zhijun, 2024. "Effects of irrigation-fertilization-aeration coupling on yield and quality of greenhouse tomatoes," Agricultural Water Management, Elsevier, vol. 299(C).
    19. René Rietra & Marius Heinen & Oene Oenema, 2022. "A Review of Crop Husbandry and Soil Management Practices Using Meta-Analysis Studies: Towards Soil-Improving Cropping Systems," Land, MDPI, vol. 11(2), pages 1-31, February.
    20. Ouyang, Zan & Tian, Juncang & Yan, Xinfang & Shen, Hui, 2020. "Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce," Agricultural Water Management, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:8:p:1248-:d:1444962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.