IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i3p439-d1353310.html
   My bibliography  Save this article

Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China

Author

Listed:
  • Penghui Wang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    School of Geosciences, Yangtze University, Wuhan 430199, China
    These authors contributed equally to this work.)

  • Rui Ding

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    Space Star Technology Co., Ltd., Beijing 100095, China
    These authors contributed equally to this work.)

  • Wenjiao Shi

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jun Li

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Geocomputation and Planning Center, Hebei Normal University, Shijiazhuang 050024, China
    Hebei Key Laboratory of Environmental Change and Ecological Construction, School of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China)

Abstract

Quantifying potential reductions in environmental impacts for multi-crop agricultural production is important for the development of environmentally friendly agricultural systems. To analyze the spatial differences in the potential reduction in nitrogen (N) use, we provided a framework that comprehensively assesses the potential of improving N use efficiency (NUE) and mitigating environmental impacts in Hubei Province, China, for multiple crops including rice, wheat, maize, tea, fruits, and vegetables, by considering N and its environmental indicators. This framework considers various sources such as organic N fertilizers and synthetic fertilizers, along with their respective environmental indicators. We designed different scenarios assuming varying degrees of improvement in the NUE for cities with a low NUE. By calculating the N rate, N surplus, N leaching, and greenhouse gas (GHG) emissions under different scenarios, we quantified the environmental mitigation potential of each crop during the production process. The results showed that when the NUE of each crop reached the average level in Hubei Province, the improvement in environmental emissions is favorable compared to other scenarios. The N rate, N surplus, N leaching, and GHG emissions of grain (cash) crops could be reduced by 25.87% (41.26%), 36.07% (38.90%), 49.47% (36.14%), and 51.52% (41.67%), respectively. Overall, improving the NUE in cash crops will result in a greater proportionate reduction in environmental impacts than that in grain crops, but grain crops will reduce the total amount of GHG emissions. Our method provides a robust measure to assess the reduction potential of N pollution and GHG emissions in multi-crop production systems.

Suggested Citation

  • Penghui Wang & Rui Ding & Wenjiao Shi & Jun Li, 2024. "Potential Reductions in the Environmental Impacts of Agricultural Production in Hubei Province, China," Agriculture, MDPI, vol. 14(3), pages 1-17, March.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:439-:d:1353310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/3/439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/3/439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baylis, Kathy & Peplow, Stephen & Rausser, Gordon & Simon, Leo, 2008. "Agri-environmental policies in the EU and United States: A comparison," Ecological Economics, Elsevier, vol. 65(4), pages 753-764, May.
    2. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    3. Zhenling Cui & Hongyan Zhang & Xinping Chen & Chaochun Zhang & Wenqi Ma & Chengdong Huang & Weifeng Zhang & Guohua Mi & Yuxin Miao & Xiaolin Li & Qiang Gao & Jianchang Yang & Zhaohui Wang & Youliang Y, 2018. "Pursuing sustainable productivity with millions of smallholder farmers," Nature, Nature, vol. 555(7696), pages 363-366, March.
    4. Baojing Gu & Xiuming Zhang & Shu Kee Lam & Yingliang Yu & Hans J. M. Grinsven & Shaohui Zhang & Xiaoxi Wang & Benjamin Leon Bodirsky & Sitong Wang & Jiakun Duan & Chenchen Ren & Lex Bouwman & Wim Vrie, 2023. "Publisher Correction: Cost-effective mitigation of nitrogen pollution from global croplands," Nature, Nature, vol. 614(7946), pages 19-19, February.
    5. Baojing Gu & Xiuming Zhang & Shu Kee Lam & Yingliang Yu & Hans J. M. Grinsven & Shaohui Zhang & Xiaoxi Wang & Benjamin Leon Bodirsky & Sitong Wang & Jiakun Duan & Chenchen Ren & Lex Bouwman & Wim Vrie, 2023. "Cost-effective mitigation of nitrogen pollution from global croplands," Nature, Nature, vol. 613(7942), pages 77-84, January.
    6. Chenchen Ren & Xinyue Zhou & Chen Wang & Yaolin Guo & Yu Diao & Sisi Shen & Stefan Reis & Wanyue Li & Jianming Xu & Baojing Gu, 2023. "Ageing threatens sustainability of smallholder farming in China," Nature, Nature, vol. 616(7955), pages 96-103, April.
    7. Jo Cutler & Marco K. Wittmann & Ayat Abdurahman & Luca D. Hargitai & Daniel Drew & Masud Husain & Patricia L. Lockwood, 2021. "Ageing is associated with disrupted reinforcement learning whilst learning to help others is preserved," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    9. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Li & Minglei Wang & Wenjiao Shi & Xiaoli Shi, 2024. "Halving Environmental Impacts of Diverse Crop Production in Fujian, China through Optimized Nitrogen Management," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    2. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Bo Sun & Yongming Luo & Dianlin Yang & Jingsong Yang & Yuguo Zhao & Jiabao Zhang, 2023. "Coordinative Management of Soil Resources and Agricultural Farmland Environment for Food Security and Sustainable Development in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    4. Wang, Hongzhang & Ren, Hao & Zhang, Lihua & Zhao, Yali & Liu, Yuee & He, Qijin & Li, Geng & Han, Kun & Zhang, Jiwang & Zhao, Bin & Ren, Baizhao & Liu, Peng, 2023. "A sustainable approach to narrowing the summer maize yield gap experienced by smallholders in the North China Plain," Agricultural Systems, Elsevier, vol. 204(C).
    5. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    6. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    7. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    8. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Xiao, Xuechen & Zang, Hecang & Liu, Yang & Zhang, Zhen & Liu, Ying & Ejaz, Irsa & Du, Chenghang & Wang, Zhimin & Sun, Zhencai & Zhang, Yinghua, 2023. "Promoting winter wheat sustainable intensification by higher nitrogen distribution in top second to fourth leaves under water-restricted condition in North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Guo, Xiao-Xia & Li, Ke-Li & Liu, Yi-Ze & Zhuang, Ming-Hao & Wang, Chong, 2022. "Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Jinglan Cui & Ouping Deng & Miao Zheng & Xiuming Zhang & Zihao Bian & Naiqing Pan & Hanqin Tian & Jianming Xu & Baojing Gu, 2024. "Warming exacerbates global inequality in forest carbon and nitrogen cycles," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    14. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Qiu, Weihong & Ma, Xiaolong & Cao, Hanbing & Huang, Tingmiao & She, Xu & Huang, Ming & Wang, Zhaohui & Liu, Jinshan, 2022. "Improving wheat yield by optimizing seeding and fertilizer rates based on precipitation in the summer fallow season in drylands of the Loess Plateau," Agricultural Water Management, Elsevier, vol. 264(C).
    16. Wenbo Wei & Maohua Xiao & Weiwei Duan & Hui Wang & Yejun Zhu & Cheng Zhai & Guosheng Geng, 2024. "Research Progress on Autonomous Operation Technology for Agricultural Equipment in Large Fields," Agriculture, MDPI, vol. 14(9), pages 1-20, August.
    17. Xinyan Wang & Qingyu Feng & Boyong Li & Yinlin Fan & Huihui Fan & Nengliang Yang & Yuan Quan & Huanru Ding & Yunlu Zhang, 2024. "Trends and Factors Influencing the Evolution of Spatial Patterns of Cropland toward Large-Scale Agricultural Production in China," Land, MDPI, vol. 13(5), pages 1-19, April.
    18. Elsadek, Elsayed Ahmed & Zhang, Ke & Hamoud, Yousef Alhaj & Mousa, Ahmed & Awad, Ahmed & Abdallah, Mohammed & Shaghaleh, Hiba & Hamad, Amar Ali Adam & Jamil, Muhammad Tahir & Elbeltagi, Ahmed, 2024. "Impacts of climate change on rice yields in the Nile River Delta of Egypt: A large-scale projection analysis based on CMIP6," Agricultural Water Management, Elsevier, vol. 292(C).
    19. Cheng, Qingyue & Li, Liangyu & Liao, Qin & Fu, Hao & Nie, Jiangxia & Luo, Yongheng & Wang, Zhonglin & Yin, Huilai & Shu, Chuanhai & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Li, Na & Yang, Zhiyuan, 2023. "Is scale production more advantageous than smallholders for Chinese rice production?," Energy, Elsevier, vol. 283(C).
    20. Xu, Zhuo & He, Ping & Yin, Xinyou & Huang, Qiuhong & Ding, Wencheng & Xu, Xinpeng & Struik, Paul C., 2023. "Can the advisory system Nutrient Expert® balance productivity, profitability and sustainability for rice production systems in China?," Agricultural Systems, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:3:p:439-:d:1353310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.