IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p177-d1325728.html
   My bibliography  Save this article

Distribution Characteristics of Carbon Density in Plant–Soil System of Temperate Steppe and Temperate Desert in the Longzhong Loess Plateau

Author

Listed:
  • Yali Li

    (Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China
    Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Lanzhou 730070, China
    Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China
    Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China)

  • Guoxing He

    (Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China
    Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Lanzhou 730070, China
    Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China
    Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China)

  • Xiaoni Liu

    (Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China
    Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Lanzhou 730070, China
    Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China
    Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China)

  • Heguang Xu

    (Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China
    Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Lanzhou 730070, China
    Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China
    Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China)

  • Tong Ji

    (Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China
    Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Lanzhou 730070, China
    Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China
    Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China)

  • Dong Lin

    (Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China
    Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Lanzhou 730070, China
    Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China
    Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China)

  • Jiachang Jiang

    (Grassland Technique Extension Station of Gansu Province, Lanzhou 730000, China)

Abstract

Grassland, as a key component of the carbon cycle in terrestrial ecosystems, is vital in confronting global climate change. Characterising the carbon density of grassland ecosystems in the Longzhong Loess Plateau is important for accurately assessing the contribution of grasslands to global climate change and achieving the goal of “peak carbon” and “carbon neutral”. In this study, the Longzhong Loess Plateau was used as the research object to explore changes in the plant–soil system carbon density in two grassland types by analysing the aboveground vegetation biomass carbon density, belowground vegetation biomass carbon density, 0–100 cm soil carbon density, and ecosystem carbon density of temperate steppe and temperate desert. The results showed that the vegetation biomass (standing and living, litter, and belowground biomass), soil, and ecosystem carbon densities of the temperate steppe were significantly higher than those of the temperate desert ( p < 0.05). Their carbon densities were 700.51, 7612.95, and 8313.45 g·m −2 , respectively. The vertical distribution of belowground biomass and soil carbon density in the temperate steppe was significantly higher than that in the temperate desert. The overall trend of belowground biomass carbon density in the temperate steppe and temperate desert showed a gradual decrease, whereas soil carbon density showed a steady increase. More than 91% and 96% of the carbon was stored in soil in the temperate steppe and temperate desert, respectively, and the belowground biomass carbon stock accounted for more than 84% of the total biomass carbon pools in both temperate steppe and temperate desert. Temperate steppe has a significant effect in improving the carbon stock of grassland ecosystems, so ecological protection and restoration of grassland should be strengthened in the future to enhance the capacity of grassland to sequester carbon and increase sinks.

Suggested Citation

  • Yali Li & Guoxing He & Xiaoni Liu & Heguang Xu & Tong Ji & Dong Lin & Jiachang Jiang, 2024. "Distribution Characteristics of Carbon Density in Plant–Soil System of Temperate Steppe and Temperate Desert in the Longzhong Loess Plateau," Agriculture, MDPI, vol. 14(2), pages 1-15, January.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:177-:d:1325728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongfei Bai & Xingguo Han & Jianguo Wu & Zuozhong Chen & Linghao Li, 2004. "Ecosystem stability and compensatory effects in the Inner Mongolia grassland," Nature, Nature, vol. 431(7005), pages 181-184, September.
    2. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaomin Lv & Guangsheng Zhou, 2018. "Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    2. Jieming Chou & Yidan Hao & Yuan Xu & Weixing Zhao & Yuanmeng Li & Haofeng Jin, 2023. "Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-12, April.
    3. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    4. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    5. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    6. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    7. Tesfaye, Gashaw & Wolff, Matthias, 2018. "Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia," Ecological Modelling, Elsevier, vol. 378(C), pages 26-36.
    8. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    9. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    10. Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
    11. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    12. Guo, Wei & Lv, Ling & Zhao, Xuesheng & Cui, Ximin & Rienow, Andreas, 2024. "Multiscale coupled development and linkage response evaluation of China's carbon neutrality and sustainable development capability–A quantitative analysis perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    13. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    14. Youngsu Park & Yujun Sun, 2018. "Sustainable Forest Management in North-East Asia: A Comparative Assessment between China and Republic of Korea," International Journal of Sciences, Office ijSciences, vol. 7(04), pages 102-114, April.
    15. Jingyi Dong & Liming Tian & Jiaqi Zhang & Yinghui Liu & Haiyan Li & Qi Dong, 2022. "Grazing Intensity Has More Effect on the Potential Nitrification Activity Than the Potential Denitrification Activity in An Alpine Meadow," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    16. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    17. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    18. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    19. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    20. Mouldi Gamoun & Mounir Louhaichi, 2021. "Botanical Composition and Species Diversity of Arid and Desert Rangelands in Tataouine, Tunisia," Land, MDPI, vol. 10(3), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:177-:d:1325728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.