IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2111-d1527002.html
   My bibliography  Save this article

Innovative Approaches for Sustainable Wastewater Resource Management

Author

Listed:
  • Ayşe Ulusoy

    (Department of Biosystems Engineering, Faculty of Engineering, University of Alanya Alaaddin Keykubat, 07425 Alanya/Antalya, Turkey)

  • Atılgan Atılgan

    (Department of Biosystems Engineering, Faculty of Engineering, University of Alanya Alaaddin Keykubat, 07425 Alanya/Antalya, Turkey)

  • Roman Rolbiecki

    (Department of Agrometeorology, Plant Irrigation and Horticulture, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland)

  • Barbara Jagosz

    (Department of Plant Biology and Biotechnology, University of Agriculture in Krakow, 31-120 Krakow, Poland)

  • Stanisław Rolbiecki

    (Department of Agrometeorology, Plant Irrigation and Horticulture, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland)

Abstract

Sustainable wastewater management is essential for conserving water resources and reducing environmental pollution. Traditional wastewater treatment methods primarily aim to purify water for reuse, yet they often involve high energy consumption, extensive chemical use, and loss of potentially recoverable resources, which pose sustainability challenges. With approximately 2.2 billion people worldwide currently lacking access to clean water—a number projected to exceed 3 billion by 2025—water scarcity has become an urgent issue. Traditional wastewater treatment processes handle around 330 billion cubic meters of water annually; however, they account for 3–4% of global energy consumption and produce 300 million tons of carbon emissions. This situation underscores the need for more sustainable treatment methods. Innovative wastewater treatment technologies have the potential to facilitate the reuse of approximately 50 billion cubic meters of water each year, helping to alleviate water scarcity. Additionally, energy recovery from these processes aims to achieve an annual energy savings of 20 TWh, in contrast to conventional treatment methods. This article examines recent advances in sustainable wastewater management technologies, specifically focusing on biological, physicochemical, and membrane-based processes. It discusses strategies for optimizing these processes to minimize environmental impact. Furthermore, innovative approaches, such as advanced oxidation processes and energy recovery, are explored for their potential to harness energy and recover nutrients from wastewater. The article concludes that implementing innovative strategies in sustainable wastewater management can significantly contribute to water conservation, energy savings, and a reduction in carbon footprint.

Suggested Citation

  • Ayşe Ulusoy & Atılgan Atılgan & Roman Rolbiecki & Barbara Jagosz & Stanisław Rolbiecki, 2024. "Innovative Approaches for Sustainable Wastewater Resource Management," Agriculture, MDPI, vol. 14(12), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2111-:d:1527002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azunre, Gideon Abagna & Amponsah, Owusu & Takyi, Stephen Appiah & Mensah, Henry & Braimah, Imoro, 2022. "Urban informalities in sub-Saharan Africa (SSA): A solution for or barrier against sustainable city development," World Development, Elsevier, vol. 152(C).
    2. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    4. Dimitra Lazaridou & Anastasios Michailidis & Konstantinos Mattas, 2019. "Evaluating the Willingness to Pay for Using Recycled Water for Irrigation," Sustainability, MDPI, vol. 11(19), pages 1-8, September.
    5. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    6. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    8. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    9. Licciardello, F. & Milani, M. & Consoli, S. & Pappalardo, N. & Barbagallo, S. & Cirelli, G., 2018. "Wastewater tertiary treatment options to match reuse standards in agriculture," Agricultural Water Management, Elsevier, vol. 210(C), pages 232-242.
    10. Deh-Haghi, Zoherh & Bagheri, Asghar & Fotourehchi, Zahra & Damalas, Christos A., 2020. "Farmers’ acceptance and willingness to pay for using treated wastewater in crop irrigation: A survey in western Iran," Agricultural Water Management, Elsevier, vol. 239(C).
    11. Garcia, X. & Pargament, D., 2015. "Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 154-166.
    12. Laura Mirra & Simone Russo & Massimiliano Borrello, 2024. "Exploring Factors Shaping Farmer Behavior in Wastewater Utilization for Agricultural Practices: A Rapid Review," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
    13. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    14. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    15. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).
    16. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    17. Ana Allende & James Monaghan, 2015. "Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions," IJERPH, MDPI, vol. 12(7), pages 1-21, July.
    18. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Songtao Liu & Furong Yu & Jianuo Zhang, 2022. "Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    20. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Lukyanov, Victor & Tarchitzky, Jorge & Paudel, Indira & Cohen, Shabtai, 2020. "Mitigating negative effects of long-term treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2111-:d:1527002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.