IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1956-d1511689.html
   My bibliography  Save this article

Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future

Author

Listed:
  • Xuhua Hu

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Yang Xu

    (Inner Mongolia Water Conservancy Research Institute, Hohhot 010051, China)

  • Peng Huang

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Dan Yuan

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China)

  • Changhong Song

    (Heilongjiang Water Conservancy Investment Group Co., Ltd., Harbin 150090, China)

  • Yingtao Wang

    (Heilongjiang Provincial Water Conservancy and Hydroelectric Power Investigation, Design and Research Institute, Harbin 150080, China)

  • Yuanlai Cui

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

  • Yufeng Luo

    (State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China)

Abstract

Northeast China plays a crucial role as a major grain-producing region, and attention to its land use and land cover changes (LUCC), especially farmland changes, are crucial to ensure food security and promote sustainable development. Based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data and a decision tree model, land types, especially those of paddy fields in Northeast China from 2000 to 2020, were extracted, and the spatiotemporal changes in paddy fields and their drivers were analyzed. The development trends of paddy fields under different future scenarios were explored alongside the Coupled Model Intercomparison Project Phase 6 (CMIP6) data. The findings revealed that the kappa coefficients of land use classification from 2000 to 2020 reached 0.761–0.825, with an overall accuracy of 80.5–87.3%. The proposed land classification method can be used for long-term paddy field monitoring in Northeast China. The LUCC in Northeast China is dominated by the expansion of paddy fields. The centroids of paddy fields gradually shifted toward the northeast by a distance of 292 km, with climate warming being the main reason for the shift. Under various climate scenarios, the temperature in Northeast China and its surrounding regions is projected to rise. Each scenario is anticipated to meet the temperature conditions necessary for the northeastward expansion of paddy fields. This study provides support for ensuring sustainable agricultural development in Northeast China.

Suggested Citation

  • Xuhua Hu & Yang Xu & Peng Huang & Dan Yuan & Changhong Song & Yingtao Wang & Yuanlai Cui & Yufeng Luo, 2024. "Identifying Changes and Their Drivers in Paddy Fields of Northeast China: Past and Future," Agriculture, MDPI, vol. 14(11), pages 1-20, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1956-:d:1511689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qingsong & Sun, Jiahao & Dai, Changlei & Zhang, Guangxin & Wu, Yanfeng, 2024. "Sustainable development of groundwater resources under the large-scale conversion of dry land into rice fields," Agricultural Water Management, Elsevier, vol. 298(C).
    2. Yulin Jiang & Zhou Lu & Shuo Li & Yongdeng Lei & Qingquan Chu & Xiaogang Yin & Fu Chen, 2020. "Large-Scale and High-Resolution Crop Mapping in China Using Sentinel-2 Satellite Imagery," Agriculture, MDPI, vol. 10(10), pages 1-16, September.
    3. Zhao, Ziyang & Wang, Hongrui & Wang, Cheng & Li, Wangcheng & Chen, Hao & Deng, Caiyun, 2020. "Changes in reference evapotranspiration over Northwest China from 1957 to 2018: Variation characteristics, cause analysis and relationships with atmospheric circulation," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Huang, Peng & Xie, Hua & Yang, Yiting & Hu, Xuhua & Liu, Chaoli & Xu, Yang & Song, Changhong & Dai, Chunsheng & Khan, Shahbaz & Cui, Yuanlai & Luo, Yufeng, 2024. "Spatiotemporal variation in rice water requirements and area in the cold rice cultivation region of China: Past and Future," Agricultural Water Management, Elsevier, vol. 298(C).
    5. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    2. Cao, Jianjun & Wei, Chen & Adamowski, Jan F. & Zhou, Junju & Liu, Chunfang & Zhu, Guofeng & Dong, Xiaogang & Zhang, Xiaofang & Zhao, Huijun & Feng, Qi, 2020. "Could arid and semi-arid abandoned lands prove ecologically or economically valuable if they afford greater soil organic carbon storage than afforested lands in China’s Loess Plateau?," Land Use Policy, Elsevier, vol. 99(C).
    3. Grace Rebecca Aduvukha & Elfatih M. Abdel-Rahman & Arthur W. Sichangi & Godfrey Ouma Makokha & Tobias Landmann & Bester Tawona Mudereri & Henri E. Z. Tonnang & Thomas Dubois, 2021. "Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets," Agriculture, MDPI, vol. 11(6), pages 1-22, June.
    4. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    5. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    6. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    7. Chen, Xin & Jiang, Li & Zhang, Guoliang & Meng, Lijun & Pan, Zhihua & Lun, Fei & An, Pingli, 2021. "Green-depressing cropping system: A referential land use practice for fallow to ensure a harmonious human-land relationship in the farming-pastoral ecotone of northern China," Land Use Policy, Elsevier, vol. 100(C).
    8. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    9. Wang, Yafei & He, Yao & Fan, Jie & Olsson, Lennart & Scown, Murray, 2024. "Balancing urbanization, agricultural production and ecological integrity: A cross-scale landscape functional and structural approach in China," Land Use Policy, Elsevier, vol. 141(C).
    10. Cai, Liping & Wang, Hui & Liu, Yanxu & Fan, Donglin & Li, Xiaoxiao, 2022. "Is potential cultivated land expanding or shrinking in the dryland of China? Spatiotemporal evaluation based on remote sensing and SVM," Land Use Policy, Elsevier, vol. 112(C).
    11. Zhao, Chunlei & Jia, Xiaoxu & Shao, Ming’an & Zhu, Yuanjun, 2021. "Regional variations in plant-available soil water storage and related driving factors in the middle reaches of the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 257(C).
    12. Zemin Zhang & Changhe Lu, 2019. "Spatio-Temporal Pattern Change of Winter Wheat Production and Its Implications in the North China Plain," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    13. Songze Wu & Dongyan Wang, 2023. "Storing Grain in the Land: The Gestation, Delineation Framework, and Case of the Two Zones Policy in China," Land, MDPI, vol. 12(4), pages 1-25, April.
    14. Zhu, Ping & Jia, Xiaoxu & Zhao, Chunlei & Shao, Mingan, 2022. "Long-term soil moisture evolution and its driving factors across China’s agroecosystems," Agricultural Water Management, Elsevier, vol. 269(C).
    15. Yang, Hao & Zou, Runyan & Hu, Yueming & Wang, Lu & Xie, Yingkai & Tan, Zhengxi & Zhu, Zhiqiang & Zhu, A.-Xing & Gong, Jianzhou & Mao, Xiaoyun, 2024. "Sustainable utilization of cultivated land resources based on "element coupling-function synergy" analytical framework: A case study of Guangdong, China," Land Use Policy, Elsevier, vol. 146(C).
    16. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Land use change and driving factors in rural China during the period 1995-2015," Land Use Policy, Elsevier, vol. 99(C).
    17. Zhou, Yang & Zhong, Zhen & Cheng, Guoqiang, 2023. "Cultivated land loss and construction land expansion in China: Evidence from national land surveys in 1996, 2009 and 2019," Land Use Policy, Elsevier, vol. 125(C).
    18. Chen, Hang & Meng, Fei & Yu, Zhenning & Tan, Yongzhong, 2022. "Spatial–temporal characteristics and influencing factors of farmland expansion in different agricultural regions of Heilongjiang Province, China," Land Use Policy, Elsevier, vol. 115(C).
    19. Ning Wang & Yingying Xing & Xiukang Wang, 2019. "Exploring Options for Improving Potato Productivity through Reducing Crop Yield Gap in Loess Plateau of China Based on Grey Correlation Analysis," Sustainability, MDPI, vol. 11(20), pages 1-14, October.
    20. Zhongqi Deng & Qianyu Zhao & Helen X. H. Bao, 2020. "The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy," Land, MDPI, vol. 9(9), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1956-:d:1511689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.