IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i10p1840-d1502022.html
   My bibliography  Save this article

The Spatiotemporal Variations in and Propagation of Meteorological, Agricultural, and Groundwater Droughts in Henan Province, China

Author

Listed:
  • Huazhu Xue

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Ruirui Zhang

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Wenfei Luan

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

  • Zhanliang Yuan

    (School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract

As the global climate changes and droughts become more frequent, understanding the characteristics and propagation dynamics of drought is critical for monitoring and early warning. This study utilized the Standardized Precipitation Evapotranspiration Index (SPEI), Vegetation Condition Index (VCI), and Groundwater Drought Index (GDI) to identify meteorological drought (MD), agricultural drought (AD), and groundwater drought (GD), respectively. Sen’s slope method and Mann–Kendall trend analysis were used to examine drought trends. The Pearson correlation coefficient (PCC) and theory of run were utilized to identify the propagation times between different types of droughts. Cross-wavelet transform (XWT) and wavelet coherence (WTC) were applied to investigate the linkages among the three types of droughts. The results showed that, from 2004 to 2022, the average durations of MD, AD, and GD in Henan Province were 4.55, 8.70, and 29.03 months, respectively. MD and AD were gradually alleviated, while GD was exacerbated. The average propagation times for the different types of droughts were as follows: 6.1 months (MD-AD), 4.4 months (MD-GD), and 16.3 months (AD-GD). Drought propagation exhibited significant seasonality, being shorter in summer and autumn than in winter and spring, and there were close relationships among MD, AD, and GD. This study revealed the characteristics and propagation dynamics of different types of droughts in Henan Province, providing scientific references for alleviating regional droughts and promoting the sustainable development of agriculture and food production.

Suggested Citation

  • Huazhu Xue & Ruirui Zhang & Wenfei Luan & Zhanliang Yuan, 2024. "The Spatiotemporal Variations in and Propagation of Meteorological, Agricultural, and Groundwater Droughts in Henan Province, China," Agriculture, MDPI, vol. 14(10), pages 1-28, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1840-:d:1502022
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/10/1840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/10/1840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fawen, Li & Manjing, Zhang & Yong, Zhao & Rengui, Jiang, 2023. "Influence of irrigation and groundwater on the propagation of meteorological drought to agricultural drought," Agricultural Water Management, Elsevier, vol. 277(C).
    2. Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Huang, Shengzhi & Huang, Qiang & Chang, Jianxia & Leng, Guoyong & Xing, Li, 2015. "The response of agricultural drought to meteorological drought and the influencing factors: A case study in the Wei River Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 45-54.
    5. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Identifying the status of groundwater drought from a GRACE mascon model perspective across China during 2003–2018," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    5. Yong-Sik Ham & Kyong-Bok Sonu & Un-Sim Paek & Kum-Chol Om & Sang-Il Jong & Kum-Ryong Jo, 2023. "Comparison of LSTM network, neural network and support vector regression coupled with wavelet decomposition for drought forecasting in the western area of the DPRK," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2619-2643, March.
    6. Cai, Siyang & Zuo, Depeng & Wang, Huixiao & Xu, Zongxue & Wang, GuoQing & Yang, Hong, 2023. "Assessment of agricultural drought based on multi-source remote sensing data in a major grain producing area of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Li, Liang & Peng, Qing & Wang, Maodong & Cao, Yuxin & Gu, Xiaobo & Cai, Huanjie, 2024. "Quantitative analysis of vegetation drought propagation process and uncertainty in the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Lusheng Li & Lili Zhao & Yanbin Li, 2023. "Spatiotemporal Characteristics of Meteorological and Agricultural Droughts in China: Change Patterns and Causes," Agriculture, MDPI, vol. 13(2), pages 1-16, January.
    9. Muhammad Nouman Sattar & Jin-Young Lee & Ji-Yae Shin & Tae-Woong Kim, 2019. "Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2439-2452, May.
    10. Bambo Bayo & Shakeel Mahmood, 2023. "Geo-spatial analysis of drought in The Gambia using multiple models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2751-2770, July.
    11. Yeqing Zhai & Jie Liang & Zhenyu An & Xin Li & Ziqian Zhu & Wanting Wang & Yuru Yi & Suhang Yang, 2022. "Data Stream Approach for Exploration of Droughts and Floods Driving Forces in the Dongting Lake Wetland," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    12. Fawen, Li & Manjing, Zhang & Yong, Zhao & Rengui, Jiang, 2023. "Influence of irrigation and groundwater on the propagation of meteorological drought to agricultural drought," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Alex Dunne & Yuriy Kuleshov, 2023. "Drought risk assessment and mapping for the Murray–Darling Basin, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 839-863, January.
    15. Lei Zhang & Wei Song & Wen Song, 2020. "Assessment of Agricultural Drought Risk in the Lancang-Mekong Region, South East Asia," IJERPH, MDPI, vol. 17(17), pages 1-24, August.
    16. Tsun-Hua Yang & Wen-Cheng Liu, 2020. "A General Overview of the Risk-Reduction Strategies for Floods and Droughts," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    17. Djerbouai Salim & Souag-Gamane Doudja & Ferhati Ahmed & Djoukbala Omar & Dougha Mostafa & Benselama Oussama & Hasbaia Mahmoud, 2023. "Comparative Study of Different Discrete Wavelet Based Neural Network Models for long term Drought Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1401-1420, February.
    18. Pan, Ying & Zhu, Yonghua & Lü, Haishen & Yagci, Ali Levent & Fu, Xiaolei & Liu, En & Xu, Haiting & Ding, Zhenzhou & Liu, Ruoyu, 2023. "Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Małgorzata Biniak-Pieróg & Mieczysław Chalfen & Andrzej Żyromski & Andrzej Doroszewski & Tomasz Jóźwicki, 2020. "The Soil Moisture during Dry Spells Model and Its Verification," Resources, MDPI, vol. 9(7), pages 1-27, July.
    20. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Xu, Yang & Hao, Fanghua, 2021. "Agricultural drought prediction in China based on drought propagation and large-scale drivers," Agricultural Water Management, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:10:p:1840-:d:1502022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.