IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2023i1p67-d1309854.html
   My bibliography  Save this article

Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models

Author

Listed:
  • Luis F. Marín-Urías

    (School of Electrical and Electronic Engineering, Universidad Veracruzana, Boca del Río 94292, Mexico)

  • Pedro J. García-Ramírez

    (Institute of Engineering, Universidad Veracruzana, Boca del Río 94292, Mexico)

  • Belisario Domínguez-Mancera

    (School of Veterinary Medicine and Animal Science, Universidad Veracruzana, Veracruz 91897, Mexico)

  • Antonio Hernández-Beltrán

    (School of Veterinary Medicine and Animal Science, Universidad Veracruzana, Veracruz 91897, Mexico)

  • José A. Vásquez-Santacruz

    (School of Electrical and Electronic Engineering, Universidad Veracruzana, Boca del Río 94292, Mexico)

  • Patricia Cervantes-Acosta

    (School of Veterinary Medicine and Animal Science, Universidad Veracruzana, Veracruz 91897, Mexico)

  • Manuel Barrientos-Morales

    (School of Veterinary Medicine and Animal Science, Universidad Veracruzana, Veracruz 91897, Mexico)

  • Rogelio de J. Portillo-Vélez

    (School of Electrical and Electronic Engineering, Universidad Veracruzana, Boca del Río 94292, Mexico)

Abstract

For years, efforts have been devoted to establishing an effective bull breeding soundness evaluation procedure; usual research on this subject is based on bull breeding soundness examination (BBSE) methodologies, which have significant limitations in terms of their evaluation procedure, such as their high cost, time consumption, and administrative difficulty, as well as a lack of diagnostic laboratories equipped to handle the more difficult cases. This research focused on the creation of a prediction model to supplement and/or improve the BBSE approach through the study of two algorithms, namely, clustering and artificial neural networks (ANNs), to find the optimum machine learning (ML) approach for our application, with an emphasis on data categorization accuracy. This tool was designed to assist veterinary medicine and farmers in identifying key factors and increasing certainty in their decision-making during the selection of bulls for breeding purposes, providing data from a limited number of factors generated from a deep pairing study of bulls. Zebu, European, and crossbred bulls were the general groupings. The data utilized in the model’s creation (N = 359) considered five variables that influence improvement decisions. This approach enhanced decision-making by 12% compared to traditional breeding bull management. ANN obtained an accuracy of 90%, with precision rates of 97% for satisfactory, 92% for unsatisfactory, and 85% for bad. These results indicate that the proposed method can be considered an effective alternative for innovative decision-making in traditional BBSE.

Suggested Citation

  • Luis F. Marín-Urías & Pedro J. García-Ramírez & Belisario Domínguez-Mancera & Antonio Hernández-Beltrán & José A. Vásquez-Santacruz & Patricia Cervantes-Acosta & Manuel Barrientos-Morales & Rogelio de, 2023. "Bull Breeding Soundness Assessment Using Artificial Neural Network-Based Predictive Models," Agriculture, MDPI, vol. 14(1), pages 1-16, December.
  • Handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:67-:d:1309854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/1/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/1/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    4. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    5. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    6. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    7. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    8. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    9. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    10. Hang Yu & Yuanjia Wang & Donglin Zeng, 2023. "A general framework of nonparametric feature selection in high‐dimensional data," Biometrics, The International Biometric Society, vol. 79(2), pages 951-963, June.
    11. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    12. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    13. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    14. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    15. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    16. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    18. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    19. Zhu Wang, 2022. "MM for penalized estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 54-75, March.
    20. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2023:i:1:p:67-:d:1309854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.