IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1673-d1224222.html
   My bibliography  Save this article

Grading and Detection Method of Asparagus Stem Blight Based on Hyperspectral Imaging of Asparagus Crowns

Author

Listed:
  • Cuiling Li

    (Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    Nongxin (Nanjing) Smart Agriculture Research Institute Co., Ltd., Nanjing 211800, China)

  • Xiu Wang

    (Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center of Intelligent Equipment for Agriculture (NERCIEA), Beijing 100097, China)

  • Liping Chen

    (National Engineering Research Center of Intelligent Equipment for Agriculture (NERCIEA), Beijing 100097, China)

  • Xueguan Zhao

    (Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    National Engineering Research Center of Intelligent Equipment for Agriculture (NERCIEA), Beijing 100097, China)

  • Yang Li

    (Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Mingzhou Chen

    (Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Haowei Liu

    (Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China)

  • Changyuan Zhai

    (Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    Nongxin (Nanjing) Smart Agriculture Research Institute Co., Ltd., Nanjing 211800, China)

Abstract

This study adopted hyperspectral imaging technology combined with machine learning to detect the disease severity of stem blight through the canopy of asparagus mother stem. Several regions of interest were selected from each hyperspectral image, and the reflection spectra of the regions of interest were extracted. There were 503 sets of hyperspectral data in the training set and 167 sets of hyperspectral data in the test set. The data were preprocessed using various methods and the dimension was reduced using PCA. K−nearest neighbours (KNN), decision tree (DT), BP neural network (BPNN), and extreme learning machine (ELM) were used to establish a classification model of asparagus stem blight. The optimal model depended on the preprocessing methods used. When modeling was based on the ELM method, the disease grade discrimination effect of the FD−MSC−ELM model was the best with an accuracy (ACC) of 1.000, a precision (PREC) of 1.000, a recall (REC) of 1.000, an F1-score (F1S) of 1.000, and a norm of the absolute error (NAE) of 0.000, respectively; when the modeling was based on the BPNN method, the discrimination effect of the FD−SNV−BPNN model was the best with an ACC of 0.976, a PREC of 0.975, a REC of 0.978, a F1S of 0.976, and a mean square error (MSE) of 0.072, respectively. The results showed that hyperspectral imaging of the asparagus mother stem canopy combined with machine learning methods could be used to grade and detect stem blight in asparagus mother stems.

Suggested Citation

  • Cuiling Li & Xiu Wang & Liping Chen & Xueguan Zhao & Yang Li & Mingzhou Chen & Haowei Liu & Changyuan Zhai, 2023. "Grading and Detection Method of Asparagus Stem Blight Based on Hyperspectral Imaging of Asparagus Crowns," Agriculture, MDPI, vol. 13(9), pages 1-26, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1673-:d:1224222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jahirul, M.I. & Rasul, M.G. & Brown, R.J. & Senadeera, W. & Hosen, M.A. & Haque, R. & Saha, S.C. & Mahlia, T.M.I., 2021. "Investigation of correlation between chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN)," Renewable Energy, Elsevier, vol. 168(C), pages 632-646.
    2. Habib Khan & Ijaz Ul Haq & Muhammad Munsif & Mustaqeem & Shafi Ullah Khan & Mi Young Lee, 2022. "Automated Wheat Diseases Classification Framework Using Advanced Machine Learning Technique," Agriculture, MDPI, vol. 12(8), pages 1-20, August.
    3. Odile Carisse & Mamadou Lamine Fall, 2021. "Decision Trees to Forecast Risks of Strawberry Powdery Mildew Caused by Podosphaera aphanis," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    4. Changguang Feng & Minlan Jiang & Qi Huang & Lingguo Zeng & Changjiang Zhang & Yulong Fan, 2022. "A Lightweight Real-Time Rice Blast Disease Segmentation Method Based on DFFANet," Agriculture, MDPI, vol. 12(10), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zimei Zhang & Jianwei Xiao & Wenjie Wang & Magdalena Zielinska & Shanyu Wang & Ziliang Liu & Zhian Zheng, 2024. "Automated Grading of Angelica sinensis Using Computer Vision and Machine Learning Techniques," Agriculture, MDPI, vol. 14(3), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliveira, Augusto Cesar Laviola de & Renato, Natalia dos Santos & Martins, Marcio Arêdes & Mendonça, Isabela Miranda de & Moraes, Camile Arêdes & Lago, Lucas Fernandes Rocha, 2023. "Renewable energy solutions based on artificial intelligence for farms in the state of Minas Gerais, Brazil: Analysis and proposition," Renewable Energy, Elsevier, vol. 204(C), pages 24-38.
    2. Suvarna, Manu & Jahirul, Mohammad Islam & Aaron-Yeap, Wai Hung & Augustine, Cheryl Valencia & Umesh, Anushri & Rasul, Mohammad Golam & Günay, Mehmet Erdem & Yildirim, Ramazan & Janaun, Jidon, 2022. "Predicting biodiesel properties and its optimal fatty acid profile via explainable machine learning," Renewable Energy, Elsevier, vol. 189(C), pages 245-258.
    3. Meftah Salem M. Alfatni & Siti Khairunniza-Bejo & Mohammad Hamiruce B. Marhaban & Osama M. Ben Saaed & Aouache Mustapha & Abdul Rashid Mohamed Shariff, 2022. "Towards a Real-Time Oil Palm Fruit Maturity System Using Supervised Classifiers Based on Feature Analysis," Agriculture, MDPI, vol. 12(9), pages 1-28, September.
    4. Giwa, Solomon O. & Taziwa, Raymond T. & Sharifpur, Mohsen, 2023. "Dependence of composition-based approaches on hybrid biodiesel fuel properties prediction using artificial neural network and random tree algorithms," Renewable Energy, Elsevier, vol. 218(C).
    5. Mallesh B. Sanjeevannavar & Nagaraj R. Banapurmath & V. Dananjaya Kumar & Ashok M. Sajjan & Irfan Anjum Badruddin & Chandramouli Vadlamudi & Sanjay Krishnappa & Sarfaraz Kamangar & Rahmath Ulla Baig &, 2023. "Machine Learning Prediction and Optimization of Performance and Emissions Characteristics of IC Engine," Sustainability, MDPI, vol. 15(18), pages 1-30, September.
    6. Chen, Zhiwen & Zhao, Ming & Lv, Yi & Wang, Iwei & Tariq, Ghulam & Zhao, Sheng & Ahmed, Shakil & Dong, Weiguo & Ji, Guozhao, 2024. "Higher heating value prediction of high ash gasification-residues: Comparison of white, grey, and black box models," Energy, Elsevier, vol. 288(C).
    7. P. A. Harari & N. R. Banapurmath & V. S. Yaliwal & T. M. Yunus Khan & Irfan Anjum Badruddin & Sarfaraz Kamangar & Teuku Meurah Indra Mahlia, 2021. "Effect of Injection Timing and Injection Duration of Manifold Injected Fuels in Reactivity Controlled Compression Ignition Engine Operated with Renewable Fuels," Energies, MDPI, vol. 14(15), pages 1-19, July.
    8. Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2022. "Novel Hybrid Statistical Learning Framework Coupled with Random Forest and Grasshopper Optimization Algorithm to Forecast Pesticide Use on Golf Courses," Agriculture, MDPI, vol. 12(7), pages 1-19, June.
    9. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    10. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    11. Murugapoopathi, S. & Surendarnath, S. & Ramachandran, T. & Amesho, Kassian T.T. & Senthil, S., 2023. "Energy and exergy analysis of VCR engine fueled with rubber-seed oil methyl ester using response surface methodology," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1673-:d:1224222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.