IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1544-d1209083.html
   My bibliography  Save this article

Early Detection of Cavitation in Centrifugal Pumps Using Low-Cost Vibration and Sound Sensors

Author

Listed:
  • Marios Karagiovanidis

    (Laboratory of Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Xanthoula Eirini Pantazi

    (Laboratory of Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Dimitrios Papamichail

    (Laboratory of General & Agricultural Hydraulics & Land Reclamation, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Vassilios Fragos

    (Laboratory of Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

The scope of this study is the evaluation of early detection methods for cavitation phenomena in centrifugal irrigation pumps by analyzing the produced vibration and sound signals from a low-cost sensor and data acquisition system and comparing several computational methods. Vibration data was acquired using the embedded accelerometer sensor of a smartphone device. Sound signals were obtained using the embedded microphone of the same commercial smartphone. The analysis was based on comparing the signals in different operating conditions with reference to the best efficiency operating point of the pump. In the case of vibrations, data was acquired for all three directional axes. The signals were processed by computational methods to extract the relative features in the frequency domain and use them to train an artificial neural network to be able to identify the different pump operating conditions while the cavitation phenomenon evolves. Three different classification algorithms were used to examine the most preferable approach for classifying data, namely the Classification Tree, the K-Nearest Neighbor, and the Support Vector Data algorithms. In addition, a convolutional neural network was utilized to examine the success rate of the classification when the datasets were formed as spectrograms instead. A detailed comparison of the classification algorithms and different axes was conducted. Comparing the results of the different methods for vibration and sound datasets, classification accuracy showed that in the case of vibration, the detection of cavitation in real conditions is possible, while it proves more challenging to identify cavitation conditions using sound data obtained with low-cost commercial sensors.

Suggested Citation

  • Marios Karagiovanidis & Xanthoula Eirini Pantazi & Dimitrios Papamichail & Vassilios Fragos, 2023. "Early Detection of Cavitation in Centrifugal Pumps Using Low-Cost Vibration and Sound Sensors," Agriculture, MDPI, vol. 13(8), pages 1-26, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1544-:d:1209083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeki Murat Çınar & Abubakar Abdussalam Nuhu & Qasim Zeeshan & Orhan Korhan & Mohammed Asmael & Babak Safaei, 2020. "Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-42, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Polorecka & Jozef Kubas & Pavel Danihelka & Katarina Petrlova & Katarina Repkova Stofkova & Katarina Buganova, 2021. "Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    2. Olcay Özge Ersöz & Ali Fırat İnal & Adnan Aktepe & Ahmet Kürşad Türker & Süleyman Ersöz, 2022. "A Systematic Literature Review of the Predictive Maintenance from Transportation Systems Aspect," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    3. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    4. André Marie Mbakop & Joseph Voufo & Florent Biyeme & Jean Raymond Lucien Meva’a, 2022. "Moving to a Flexible Shop Floor by Analyzing the Information Flow Coming from Levels of Decision on the Shop Floor of Developing Countries Using Artificial Neural Network: Cameroon, Case Study," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 255-270, June.
    5. Zander, Bennet & Lange, Kerstin & Haasis, Hans-Dietrich, 2021. "Designing the data supply chain of a smart construction factory," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 41-62, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Saud Altaf & Shafiq Ahmad & Mazen Zaindin & Shamsul Huda & Sofia Iqbal & Muhammad Waseem Soomro, 2022. "Multiple Industrial Induction Motors Fault Diagnosis Model within Powerline System Based on Wireless Sensor Network," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    7. Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
    8. Dayo-Olupona, Oluwatobi & Genc, Bekir & Celik, Turgay & Bada, Samson, 2023. "Adoptable approaches to predictive maintenance in mining industry: An overview," Resources Policy, Elsevier, vol. 86(PA).
    9. Ioannis Mallidis & Volha Yakavenka & Anastasios Konstantinidis & Nikolaos Sariannidis, 2021. "A Goal Programming-Based Methodology for Machine Learning Model Selection Decisions: A Predictive Maintenance Application," Mathematics, MDPI, vol. 9(19), pages 1-16, September.
    10. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    11. Zeki Murat Çınar & Qasim Zeeshan & Orhan Korhan, 2021. "A Framework for Industry 4.0 Readiness and Maturity of Smart Manufacturing Enterprises: A Case Study," Sustainability, MDPI, vol. 13(12), pages 1-32, June.
    12. Francesco Polese & Carmen Gallucci & Luca Carrubbo & Rosalia Santulli, 2021. "Predictive Maintenance as a Driver for Corporate Sustainability: Evidence from a Public-Private Co-Financed R&D Project," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    13. Bożena Zwolińska & Jakub Wiercioch, 2022. "Selection of Maintenance Strategies for Machines in a Series-Parallel System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    14. Moamin A. Mahmoud & Naziffa Raha Md Nasir & Mathuri Gurunathan & Preveena Raj & Salama A. Mostafa, 2021. "The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review," Energies, MDPI, vol. 14(16), pages 1-27, August.
    15. Abdallah Moubayed & Abdallah Shami & Anwer Al-Dulaimi, 2022. "On End-to-End Intelligent Automation of 6G Networks," Future Internet, MDPI, vol. 14(6), pages 1-28, May.
    16. Alisha Lakra & Shubhkirti Gupta & Ravi Ranjan & Sushanta Tripathy & Deepak Singhal, 2022. "The Significance of Machine Learning in the Manufacturing Sector: An ISM Approach," Logistics, MDPI, vol. 6(4), pages 1-15, October.
    17. Shiza Mushtaq & M. M. Manjurul Islam & Muhammad Sohaib, 2021. "Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review," Energies, MDPI, vol. 14(16), pages 1-24, August.
    18. Henry Ekwaro-Osire & Dennis Bode & Klaus-Dieter Thoben & Jan-Hendrik Ohlendorf, 2022. "Identification of Machine Learning Relevant Energy and Resource Manufacturing Efficiency Levers," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    19. Krzysztof Lalik & Filip Wątorek, 2021. "Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating Machines Using Augmented Reality Goggles," Energies, MDPI, vol. 14(22), pages 1-18, November.
    20. Valentina De Simone & Valentina Di Pasquale & Maria Elena Nenni & Salvatore Miranda, 2023. "Sustainable Production Planning and Control in Manufacturing Contexts: A Bibliometric Review," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1544-:d:1209083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.