IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i7p1354-d1187165.html
   My bibliography  Save this article

Greenhouse Gas Emissions in the Agricultural and Industrial Sectors—Change Trends, Economic Conditions, and Country Classification: Evidence from the European Union

Author

Listed:
  • Anna Murawska

    (Department of Economics and Marketing, Faculty of Management, Bydgoszcz University of Science and Technology, Kaliskiego Str. 7, 85-796 Bydgoszcz, Poland)

  • Elżbieta Goryńska-Goldmann

    (Department of Economics and Economical Policy in Agribusiness, Poznań University of Life Sciences (PULS), Wojska Polskiego Str. 28, 60-637 Poznań, Poland)

Abstract

The decrease in the level of greenhouse gas (GHG) emissions from industry and agriculture is one of the biggest challenges that European Union (EU) countries have to face. Their economic development should occur under the conditions of limiting the pressure on the environment. The agricultural and industrial sectors play a key role in ensuring food security, technological progress, job security, social well-being, economic competitiveness, and sustainable development. The main purpose of this article was to identify and compare the level, trends, and variability in greenhouse gas emissions from industry and agriculture in EU countries in 2010–2019, to create classes of countries with similar gas emissions, and to analyze the average values of their economic conditions. The original contribution to the article was to investigate whether there is a relationship between the level of greenhouse gas emissions and the economic development of countries and other economic indicators characterizing the sectors of industry and agriculture. Empirical data were obtained from the Eurostat and Ilostat databases. Basic descriptive statistics, classification methods, multiple regression, and correlation methods were used in the study. The industrial and agricultural sectors in EU countries emit similar amounts of greenhouse gases into the environment. In the years 2010–2019, the percentage share of emissions from these sectors in total gas emissions was growing dynamically, but no evidence was found indicating that those countries that emitted the most greenhouse gases significantly reduced their emissions in the decade under review. Moreover, EU countries are still significantly and invariably differentiated in this respect. Greenhouse gas emissions from industry and agriculture are influenced by the economic characteristics of these sectors, such as the level of GDP per capita, the scale of investment by enterprises, the expenditure on research and development, as well as employment in these sectors. The findings of this study show that total greenhouse gas emissions from all sources increase with countries’ economic growth, while a higher level of support of EU countries for research and development, and a greater share of employment in both industry and agriculture, translate into higher greenhouse gas emissions from these sectors. These conclusions may be useful for decision makers in developed and developing countries, as well as those in the industrial and agricultural sectors, in controlling and verifying the possible causes of greenhouse gas emissions in terms of the need to reduce their negative role on the environment and human health.

Suggested Citation

  • Anna Murawska & Elżbieta Goryńska-Goldmann, 2023. "Greenhouse Gas Emissions in the Agricultural and Industrial Sectors—Change Trends, Economic Conditions, and Country Classification: Evidence from the European Union," Agriculture, MDPI, vol. 13(7), pages 1-25, July.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1354-:d:1187165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/7/1354/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/7/1354/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weiwei Mo & Darline Balen & Marianna Moura & Kevin H. Gardner, 2018. "A Regional Analysis of the Life Cycle Environmental and Economic Tradeoffs of Different Economic Growth Paths," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    2. Nicoletta Batini, 2019. "Transforming Agri-Food Sectors to Mitigate Climate Change: The Role of Green Finance," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 88(3), pages 7-42.
    3. Fodha, Mouez & Zaghdoud, Oussama, 2010. "Economic growth and pollutant emissions in Tunisia: An empirical analysis of the environmental Kuznets curve," Energy Policy, Elsevier, vol. 38(2), pages 1150-1156, February.
    4. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    5. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    6. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    7. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    8. Felix Schläpfer, 2020. "External Costs of Agriculture Derived from Payments for Agri-Environment Measures: Framework and Application to Switzerland," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    9. Bartłomiej Bajan & Joanna Łukasiewicz & Aldona Mrówczyńska-Kamińska, 2021. "Energy Consumption and Its Structures in Food Production Systems of the Visegrad Group Countries Compared with EU-15 Countries," Energies, MDPI, vol. 14(13), pages 1-24, July.
    10. Anna Murawska & Piotr Prus, 2021. "The Progress of Sustainable Management of Ammonia Emissions from Agriculture in European Union States Including Poland—Variation, Trends, and Economic Conditions," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    11. Eleni Zafeiriou & Ioannis Mallidis & Konstantinos Galanopoulos & Garyfallos Arabatzis, 2018. "Greenhouse Gas Emissions and Economic Performance in EU Agriculture: An Empirical Study in a Non-Linear Framework," Sustainability, MDPI, vol. 10(11), pages 1-18, October.
    12. Magdalena Ziolo & Krzysztof Kluza & Anna Spoz, 2019. "Impact of Sustainable Financial and Economic Development on Greenhouse Gas Emission in the Developed and Converging Economies," Energies, MDPI, vol. 12(23), pages 1-30, November.
    13. Narayan, Paresh Kumar & Narayan, Seema, 2010. "Carbon dioxide emissions and economic growth: Panel data evidence from developing countries," Energy Policy, Elsevier, vol. 38(1), pages 661-666, January.
    14. Anna Komarnicka & Anna Murawska, 2021. "Comparison of Consumption and Renewable Sources of Energy in European Union Countries—Sectoral Indicators, Economic Conditions and Environmental Impacts," Energies, MDPI, vol. 14(12), pages 1-24, June.
    15. Ikabongo Mukumbuta & Mariko Shimizu & Ryusuke Hatano, 2017. "Mitigating Global Warming Potential and Greenhouse Gas Intensities by Applying Composted Manure in Cornfield: A 3-Year Field Study in an Andosol Soil," Agriculture, MDPI, vol. 7(2), pages 1-20, February.
    16. Kornelis Blok & Angélica Afanador & Irina van der Hoorn & Tom Berg & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2020. "Assessment of Sectoral Greenhouse Gas Emission Reduction Potentials for 2030," Energies, MDPI, vol. 13(4), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Pascuzzi & Katarzyna Łyp-Wrońska & Katarzyna Gdowska & Francesco Paciolla, 2024. "Sustainability Evaluation of Hybrid Agriculture-Tractor Powertrains," Sustainability, MDPI, vol. 16(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Murawska & Piotr Prus, 2021. "The Progress of Sustainable Management of Ammonia Emissions from Agriculture in European Union States Including Poland—Variation, Trends, and Economic Conditions," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    2. Ben Jebli, Mehdi & Ben Youssef, Slim, 2015. "The environmental Kuznets curve, economic growth, renewable and non-renewable energy, and trade in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 173-185.
    3. Muhammad Bilal Khan & Hummera Saleem & Malik Shahzad Shabbir & Xie Huobao, 2022. "The effects of globalization, energy consumption and economic growth on carbon dioxide emissions in South Asian countries," Energy & Environment, , vol. 33(1), pages 107-134, February.
    4. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    5. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    6. Rahman, Mohammad Mafizur, 2017. "Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 506-514.
    7. Furuoka, Fumitaka, 2015. "The CO2 emissions–development nexus revisited," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1256-1275.
    8. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    9. Acheampong, Alex O., 2018. "Economic growth, CO2 emissions and energy consumption: What causes what and where?," Energy Economics, Elsevier, vol. 74(C), pages 677-692.
    10. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    11. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    12. Gozgor, Giray & Can, Muhlis, 2016. "Export Product Diversification and the Environmental Kuznets Curve: Evidence from Turkey," MPRA Paper 69761, University Library of Munich, Germany.
    13. Misbah Sadiq & Desti Kannaiah & Ghulam Yahya Khan & Malik Shahzad Shabbir & Kanwal Bilal & Aysha Zamir, 2023. "Does sustainable environmental agenda matter? The role of globalization toward energy consumption, economic growth, and carbon dioxide emissions in South Asian countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 76-95, January.
    14. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    15. Ozcan, Burcu, 2013. "The nexus between carbon emissions, energy consumption and economic growth in Middle East countries: A panel data analysis," Energy Policy, Elsevier, vol. 62(C), pages 1138-1147.
    16. Jeyhun I. Mikayilov & Marzio Galeotti & Fakhri J. Hasanov, 2018. "The Impact of Economic Growth on CO2 Emissions in Azerbaijan," IEFE Working Papers 102, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    17. Jianhui Jian & Xiaojie Fan & Pinglin He & Hao Xiong & Huayu Shen, 2019. "The Effects of Energy Consumption, Economic Growth and Financial Development on CO 2 Emissions in China: A VECM Approach," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    18. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    19. repec:ipg:wpaper:2014-542 is not listed on IDEAS
    20. Sapkota, Pratikshya & Bastola, Umesh, 2017. "Foreign direct investment, income, and environmental pollution in developing countries: Panel data analysis of Latin America," Energy Economics, Elsevier, vol. 64(C), pages 206-212.
    21. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:7:p:1354-:d:1187165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.