IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i6p1129-d1157373.html
   My bibliography  Save this article

Production of Sweet Sorghum Bio-Feedstock on Technosol Using Municipal Sewage Sludge Treated with Flocculant, in Ukraine

Author

Listed:
  • Mykola Kharytonov

    (Department of Soil Science and Farming, Faculty of Agronomy, Dnipro State Agrarian and Economic University, 49000 Dnipro, Ukraine)

  • Nadia Martynova

    (Laboratory of Natural Flora, Botany Garden, Dnipro National University, 49000 Dnipro, Ukraine)

  • Mykhailo Babenko

    (Department of Soil Science and Farming, Faculty of Agronomy, Dnipro State Agrarian and Economic University, 49000 Dnipro, Ukraine)

  • Iryna Rula

    (Department of Chemistry, Faculty of Agronomy, Dnipro National University, 49000 Dnipro, Ukraine)

  • Nicoleta Ungureanu

    (Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 006042 Bucharest, Romania)

  • Vasilica Ștefan

    (National Institute of Research—Development for Machines and Installations Designed for Agriculture and Food Industry—INMA Bucharest, 013813 Bucharest, Romania)

Abstract

This paper presents the influence of sewage sludge (SS) on the biometric parameters, absorption of mineral elements and thermal characteristics of sweet sorghum ( Sorghum bicolor L.) grown on Technosol. Two types of sewage sludge were used: unmodified and modified with DAMET flocculant. Each type of sludge was applied in three doses (expressed as dry matter basis, DM): 20 t DM/ha, 40 t DM/ha and 60 t DM/ha, respectively. The yield of fresh biomass depended on the dose of sewage sludge: it increased by 14.5–41% and reached 104.6 t/ha after application of the sewage sludge with flocculant at a maximum rate of 60 t/ha. Sorghum biomass actively absorbs nutrients from the soil. Nitrogen was absorbed more actively; depending on the type and dose of sewage sludge application, its content in biomass increased from 12–40% (dose of 20 t/ha) to 80–112% (dose of 60 t/ha). By content in sorghum biomass, essential elements can be arranged in descending order as follows: Fe → Mn → Zn → Cu. Sorghum shows a low ability to accumulate some heavy metals in aboveground biomass. Despite the fact that large doses of sewage sludge contributed to an increase in the content of nickel, cadmium and lead in the substrate by 1.8–5.6 times, the ratio of the content of these elements in plants to the content in the substrate remained low. Sewage sludge affects the process of thermal degradation of sorghum biomass. The decomposition of the main components occurs at lower temperatures, and, as a rule, at higher rates. Sewage sludge (especially with flocculant) contributes to a more complete combustion of biomass. The results showed that sewage sludge with flocculant at a dose of 40 t/ha is the most optimal fertilizer option for growing sweet sorghum on such Technosols as loess-like loam.

Suggested Citation

  • Mykola Kharytonov & Nadia Martynova & Mykhailo Babenko & Iryna Rula & Nicoleta Ungureanu & Vasilica Ștefan, 2023. "Production of Sweet Sorghum Bio-Feedstock on Technosol Using Municipal Sewage Sludge Treated with Flocculant, in Ukraine," Agriculture, MDPI, vol. 13(6), pages 1-16, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1129-:d:1157373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/6/1129/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/6/1129/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    2. Yelizaveta Chernysh & Magdalena Balintova & Leonid Plyatsuk & Marian Holub & Stefan Demcak, 2018. "The Influence of Phosphogypsum Addition on Phosphorus Release in Biochemical Treatment of Sewage Sludge," IJERPH, MDPI, vol. 15(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teresa Rodríguez-Espinosa & Ana Pérez-Gimeno & María Belén Almendro-Candel & Jose Navarro-Pedreño, 2024. "Constructing Soils to Mitigate Land Occupation by Urban Expansion and Metabolism to Improve Healthy Cities," Land, MDPI, vol. 13(9), pages 1-14, August.
    2. Dmytro Onopriienko & Tetiana Makarova & Hennadii Hapich & Yelizaveta Chernysh & Hynek Roubík, 2024. "Agroecological Transformation in the Salt Composition of Soil under the Phosphogypsum Influence on Irrigated Lands in Ukraine," Agriculture, MDPI, vol. 14(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claire Villette & Loïc Maurer & Julie Zumsteg & Jérôme Mutterer & Adrien Wanko & Dimitri Heintz, 2023. "Mass spectrometry imaging for biosolids characterization to assess ecological or health risks before reuse," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    3. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    5. Daniel Ddiba & Kim Andersson & Arno Rosemarin & Helfrid Schulte-Herbrüggen & Sarah Dickin, 2022. "The circular economy potential of urban organic waste streams in low- and middle-income countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1116-1144, January.
    6. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    7. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    8. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    9. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    10. Yan-Jhang Chen & Tang-Yu Fan & Li-Pang Wang & Ta-Wui Cheng & Shiao-Shing Chen & Min-Hao Yuan & Shikun Cheng, 2020. "Application of Fenton Method for the Removal of Organic Matter in Sewage Sludge at Room Temperature," Sustainability, MDPI, vol. 12(4), pages 1-10, February.
    11. Reijnders, L., 2014. "Phosphorus resources, their depletion and conservation, a review," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 32-49.
    12. Sandylove Afrane & Jeffrey Dankwa Ampah & Ephraim Bonah Agyekum & Prince Oppong Amoh & Abdulfatah Abdu Yusuf & Islam Md Rizwanul Fattah & Ebenezer Agbozo & Elmazeg Elgamli & Mokhtar Shouran & Guozhu M, 2022. "Integrated AHP-TOPSIS under a Fuzzy Environment for the Selection of Waste-To-Energy Technologies in Ghana: A Performance Analysis and Socio-Enviro-Economic Feasibility Study," IJERPH, MDPI, vol. 19(14), pages 1-31, July.
    13. Marzena Smol & Paulina Marcinek & Zuzana Šimková & Tomáš Bakalár & Milan Hemzal & Jiří Jaromír Klemeš & Yee Van Fan & Kinga Lorencz & Eugeniusz Koda & Anna Podlasek, 2022. "Inventory of Good Practices of Sustainable and Circular Phosphorus Management in the Visegrad Group (V4)," Resources, MDPI, vol. 12(1), pages 1-17, December.
    14. Eui-Hwan Hong & Jun-Gyu Park & Beom Lee & Wei-Qi Shi & Hang-Bae Jun, 2019. "Improvement of Waste Dehydrated Sludge for Anaerobic Digestion through High-Temperature and High-Pressure Solubilization," Energies, MDPI, vol. 13(1), pages 1-16, December.
    15. Inesa Kniuipytė & Marius Praspaliauskas & Jonė Venclovienė & Jūratė Žaltauskaitė, 2023. "Soil Remediation after Sewage Sludge or Sewage Sludge Char Application with Industrial Hemp and Its Potential for Bioenergy Production," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    16. Wu, Haijun & Li, Xinlong & Zhang, Quan & Zhang, Kai & Xu, Xia & Xu, Jian, 2022. "Promoting the conversion of poplar to bio-oil based on the synergistic effect of alkaline hydrogen peroxide," Renewable Energy, Elsevier, vol. 192(C), pages 107-117.
    17. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    18. Semiyaga, Swaib & Okure, Mackay A.E. & Niwagaba, Charles B. & Katukiza, Alex Y. & Kansiime, Frank, 2015. "Decentralized options for faecal sludge management in urban slum areas of Sub-Saharan Africa: A review of technologies, practices and end-uses," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 109-119.
    19. Do, Truong Xuan & Lim, Young-il & Cho, Hyodeuk & Shim, Jaehui & Yoo, Jeongkeun & Rho, Kyutai & Choi, Seong-Geun & Park, Chanwoo & Park, Byeong-Yun, 2018. "Techno-economic analysis of fry-drying and torrefaction plant for bio-solid fuel production," Renewable Energy, Elsevier, vol. 119(C), pages 45-53.
    20. Nazari, Laleh & Yuan, Zhongshun & Ray, Madhumita B. & Xu, Chunbao (Charles), 2017. "Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology," Applied Energy, Elsevier, vol. 203(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:6:p:1129-:d:1157373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.