IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p924-d1130408.html
   My bibliography  Save this article

Risk Assessment of Sulfonylurea Herbicides Based on a Complex Bioindicator

Author

Listed:
  • Aurica Breica Borozan

    (Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania)

  • Despina-Maria Bordean

    (Faculty of Food Engineering, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania)

  • Oana Maria Boldura

    (Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania)

  • Sorina Popescu

    (Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania)

  • Marioara Nicoleta Caraba

    (Faculty of Chemistry-Biology-Geography, West University of Timisoara, 4 Vasile Parvan Str., Timisoara 300223, Romania)

  • Camelia Moldovan

    (Faculty of Food Engineering, University of Life Sciences “King Mihai I” from Timisoara, 119 Calea Aradului, 300645 Timisoara, Romania)

Abstract

The increasing use of herbicides in recent years for improved crop yields requires a risk assessment. To assess their impact on soil, the use of an indicator named the synthetic biological indicator (ISB%) is proposed, which includes a range of biotic and enzymatic parameters derived from previous experiments. Three sulfonylurea herbicides were evaluated, named chlorsulfuron, amidosulfuron, and tifensulfuron. The biotic and enzymatic parameters were monitored using different herbicide doses in field and laboratory experiments. Calculating this indicator for all experimental variants in the field and laboratory showed that the impact of the analyzed herbicides was insignificant, but there were statistically significant differences between the experimental conditions. The registration of an herbicide based on the legislation of different countries requires several toxicity tests of the active substance’s effects against soil microorganisms and some of the soil functions performed by microorganisms, parameters which are also included in the synthetic biological indicator (ISB). This indicator has the capacity to provide important information for sustainable soil management, including a minimum set of parameters, which can provide global information regarding the environment, showing changes in multiple areas of interest, including parameters that can be applied at minimal cost worldwide. In conclusion, we can say that the use of the indicator highlights all the changes caused by various soil chemical treatments because it follows the variation in a large number of parameters, unlike other indicators that follow only one, providing useful information for sustainable farming practices.

Suggested Citation

  • Aurica Breica Borozan & Despina-Maria Bordean & Oana Maria Boldura & Sorina Popescu & Marioara Nicoleta Caraba & Camelia Moldovan, 2023. "Risk Assessment of Sulfonylurea Herbicides Based on a Complex Bioindicator," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:924-:d:1130408
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    2. Nourry, Myriam, 2008. "Measuring sustainable development: Some empirical evidence for France from eight alternative indicators," Ecological Economics, Elsevier, vol. 67(3), pages 441-456, October.
    3. Hugo Valin & Ronald D. Sands & Dominique van der Mensbrugghe & Gerald C. Nelson & Helal Ahammad & Elodie Blanc & Benjamin Bodirsky & Shinichiro Fujimori & Tomoko Hasegawa & Petr Havlik & Edwina Heyhoe, 2014. "The future of food demand: understanding differences in global economic models," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 51-67, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferng, Jiun-Jiun, 2014. "Nested open systems: An important concept for applying ecological footprint analysis to sustainable development assessment," Ecological Economics, Elsevier, vol. 106(C), pages 105-111.
    2. Nelson, Ewan & Warren, Peter, 2020. "UK transport decoupling: On track for clean growth in transport?," Transport Policy, Elsevier, vol. 90(C), pages 39-51.
    3. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    4. Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
    5. Huiyuan Guan & Yongping Bai & Chunyue Zhang, 2022. "Research on Ecosystem Security and Restoration Pattern of Urban Agglomeration in the Yellow River Basin," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    6. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    7. Jayatilleke S. Bandara & Yiyong Cai, 2014. "The impact of climate change on food crop productivity, food prices and food security in South Asia," Economic Analysis and Policy, Elsevier, vol. 44(4), pages 451-465.
    8. Birgit Kopainsky & Anita Frehner & Adrian Müller, 2020. "Sustainable and healthy diets: Synergies and trade‐offs in Switzerland," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 908-927, November.
    9. Hervé Corvellec & Johan Hultman & Anne Jerneck & Susanne Arvidsson & Johan Ekroos & Niklas Wahlberg & Timothy W. Luke, 2021. "Resourcification: A non‐essentialist theory of resources for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1249-1256, November.
    10. Mohammad Zarei & Abdolsamad K. Amirkolaei & Jesse T. Trushenski & Wendy M. Sealey & Michael H. Schwarz & Reza Ovissipour, 2022. "Sorghum as a Potential Valuable Aquafeed Ingredient: Nutritional Quality and Digestibility," Agriculture, MDPI, vol. 12(5), pages 1-17, May.
    11. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    12. Islam, Moinul & Kotani, Koji & Managi, Shunsuke, 2016. "Climate perception and flood mitigation cooperation: A Bangladesh case study," Economic Analysis and Policy, Elsevier, vol. 49(C), pages 117-133.
    13. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    14. Carina Mueller & Christopher West & Mairon G. Bastos Lima & Bob Doherty, 2023. "Demand-Side Actors in Agricultural Supply Chain Sustainability: An Assessment of Motivations for Action, Implementation Challenges, and Research Frontiers," World, MDPI, vol. 4(3), pages 1-20, September.
    15. Janet Judy McIntyre‐Mills, 2013. "Anthropocentrism and Well‐being: A Way Out of the Lobster Pot?," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(2), pages 136-155, March.
    16. Hametner, Markus, 2022. "Economics without ecology: How the SDGs fail to align socioeconomic development with environmental sustainability," Ecological Economics, Elsevier, vol. 199(C).
    17. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    18. Lawn, Philip & Clarke, Matthew, 2010. "The end of economic growth? A contracting threshold hypothesis," Ecological Economics, Elsevier, vol. 69(11), pages 2213-2223, September.
    19. Ronja Teschner & Jessica Ruppen & Basil Bornemann & Rony Emmenegger & Lucía Aguirre Sánchez, 2021. "Mapping Sustainable Diets: A Comparison of Sustainability References in Dietary Guidelines of Swiss Food Governance Actors," Sustainability, MDPI, vol. 13(21), pages 1-21, November.
    20. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:924-:d:1130408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.