IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p1070-d1148991.html
   My bibliography  Save this article

Calibration of Ramie Stalk Contact Parameters Based on the Discrete Element Method

Author

Listed:
  • Yao Hu

    (Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
    These authors contributed equally to this work.)

  • Wei Xiang

    (Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
    These authors contributed equally to this work.)

  • Yiping Duan

    (Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China)

  • Bo Yan

    (Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China)

  • Lan Ma

    (Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China)

  • Jiajie Liu

    (Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China)

  • Jiangnan Lyu

    (Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China)

Abstract

To obtain the physical parameters and contact parameters of ramie stalk decorticating simulation, the structural dimensions, density, moisture content, elastic modulus, and contact parameters of the ramie stalk were measured in this study based on the phloem and xylem of the ramie stalk. The physical stacking angles of the phloem and xylem were measured by the cylinder lift method and the extraction of the partition method, respectively. The contact parameters between the xylem and phloem of the ramie stalk were directly calibrated. Additionally, the contact parameters of the phloem–phloem, phloem–Q235A steel, xylem–xylem, and xylem–Q235A steel were used as calibration objects, and the simulated stacking angle was used as the evaluation index. Then, the Plackett–Burman test was designed to screen for the parameters which were significantly affecting the simulated stacking angle. Furthermore, the steepest ascent test determined the optimal range of values for two significant parameters of the phloem and three significant parameters of the xylem. Based on the central composite design, the second-order regression equations between the significant parameters of the phloem and xylem and the stacking angle were established, respectively. The physical stacking angles of 37.93° for phloem and 27.17° for xylem were the target values to obtain the optimal parameter group. The results showed that the restitution, static, and rolling friction coefficients between the xylem and phloem were 0.60, 0.53, and 0.021, respectively. The static and rolling friction coefficients between the phloem and phloem were 0.41 and 0.056, respectively. The rolling friction coefficient between the xylem and Q235A steel was 0.033, and the static and rolling friction coefficients between the xylem and xylem were 0.44 and 0.016, respectively. The verification test showed that the relative error values were less than 2.11%, which further indicated that the modeling method and parameter calibration of the ramie stalk phloem and xylem models were accurate and reliable. They can be used for the subsequent calibration simulation tests of ramie stalk bonding parameters and ramie stalk decorticating simulations.

Suggested Citation

  • Yao Hu & Wei Xiang & Yiping Duan & Bo Yan & Lan Ma & Jiajie Liu & Jiangnan Lyu, 2023. "Calibration of Ramie Stalk Contact Parameters Based on the Discrete Element Method," Agriculture, MDPI, vol. 13(5), pages 1-32, May.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1070-:d:1148991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/1070/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/1070/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongbo Zhao & Yuxiang Huang & Zhengdao Liu & Wenzheng Liu & Zhiqi Zheng, 2021. "Applications of Discrete Element Method in the Research of Agricultural Machinery: A Review," Agriculture, MDPI, vol. 11(5), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Shen & Zhong Tang & Maohua Xiao, 2023. "“Eyes”, “Brain”, “Feet” and “Hands” of Efficient Harvesting Machinery," Agriculture, MDPI, vol. 13(10), pages 1-3, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhu & Xiaoning He & Shuqi Shang & Zhuang Zhao & Haiqing Wang & Ying Tan & Chengpeng Li & Dongwei Wang, 2022. "Evaluation of Soil-Cutting and Plant-Crushing Performance of Rotary Blades with Double-Eccentric Circular-Edge Curve for Harvesting Cyperus esculentus," Agriculture, MDPI, vol. 12(6), pages 1-21, June.
    2. Zhuang Zhao & Xiaoning He & Shuqi Shang & Jialin Hou & Hao Zhu & Haiqing Wang & Yuetao Wang & Dongjie Li & Zengcun Chang & Chao Xia & Dongwei Wang, 2022. "Design and Testing of Discrete Element-Based Counter-Rotating Excavation Device for Cyperus esculentus," Agriculture, MDPI, vol. 12(10), pages 1-24, October.
    3. Yuyao Li & Jiali Fan & Zhichao Hu & Weiwen Luo & Hongguang Yang & Lili Shi & Feng Wu, 2022. "Calibration of Discrete Element Model Parameters of Soil around Tubers during Potato Harvesting Period," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    4. Long Wang & Jianfei Xing & Xiaowei He & Xin Li & Wensong Guo & Xufeng Wang & Shulin Hou, 2023. "Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    5. Wang Yang & Jinfei Zhao & Xinying Liu & Linqiao Xi & Jiean Liao, 2022. "Simulation and Test of “Separated Burying Device” of Green Manure Returning Machine Based on the EDEM Software," Agriculture, MDPI, vol. 12(5), pages 1-15, April.
    6. Yang Jiang & Yurong Tang & Wen Li & Yong Zeng & Xiaolong Li & Yang Liu & Hong Zhang, 2022. "Determination Method of Core Parameters for the Mechanical Classification Simulation of Thin-Skinned Walnuts," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
    7. Heng Zhang & Zhentuo Wen & Yaya Chen & Junxiao Liu & Hongxin Liu & Zhifu Zhang & Xirui Zhang, 2023. "Research on Cutting Angle Design Optimization of Rubber Cutter Based on Discrete Element Method," Agriculture, MDPI, vol. 13(10), pages 1-20, September.
    8. Xun He & Yanliu Lv & Zhe Qu & Wanzhang Wang & Zheng Zhou & Hao He, 2022. "Parameters Optimization and Test of Caterpillar Self-Propelled Tiger Nut Harvester Hoisting Device," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    9. Emmanuel Awuah & Kojo Atta Aikins & Diogenes L. Antille & Jun Zhou & Bertrand Vigninou Gbenontin & Peter Mecha & Zian Liang, 2023. "Discrete Element Method Simulation and Field Evaluation of a Vibrating Root-Tuber Shovel in Cohesive and Frictional Soils," Agriculture, MDPI, vol. 13(8), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:1070-:d:1148991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.