IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p1894-d1249085.html
   My bibliography  Save this article

Research on Cutting Angle Design Optimization of Rubber Cutter Based on Discrete Element Method

Author

Listed:
  • Heng Zhang

    (School of Information and Communication Engineering, Hainan University, Haikou 570228, China)

  • Zhentuo Wen

    (School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China
    School of Information Engineering, Guangdong Meizhou Vocational and Technical College, Meizhou 514011, China)

  • Yaya Chen

    (School of Information and Communication Engineering, Hainan University, Haikou 570228, China)

  • Junxiao Liu

    (School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China)

  • Hongxin Liu

    (School of Mechanical and Electrical Engineering, Suqian University, Suqian 223800, China)

  • Zhifu Zhang

    (School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China)

  • Xirui Zhang

    (School of Information and Communication Engineering, Hainan University, Haikou 570228, China
    School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China)

Abstract

This paper focuses on obtaining fundamental data for optimizing the design of intelligent equipment for cutting natural rubber and its key components. It uses natural rubber bark as the research subject and employs specific experimental apparatus to measure the physical properties and contact coefficients of the rubber bark. The discrete element method, along with the Hertz–Mindlin model featuring bonding contacts, are employed to create a discrete element model of natural rubber bark. Parameters are calibrated, and model validation is performed. Subsequently, a one-factor simulation test is conducted to assess various cutting angles of the rubber cutter knife. A secondary Fourier fitting is applied to fit the curve to the average shear force values obtained from the simulation. The results indicate that the lowest average shear force, at 84.345 N, occurs within the range of cutting angles between 25° and 30°. The corresponding optimal cutting angle is 29.294°, suggesting that cutting with low resistance can be achieved at this angle, leading to reduced power consumption. Following a statistical analysis of field rubber-cutting tests conducted in a forest setting, it was found that the average power consumption for rubber-cutting operations under the optimal cutting angle is 0.96 W·h. Additionally, the volume of rubber discharged in the initial 5 min period is 6.53 mL. These findings hold significant importance for guiding the optimization and enhancement of the design of intelligent equipment for cutting natural rubber and its key components.

Suggested Citation

  • Heng Zhang & Zhentuo Wen & Yaya Chen & Junxiao Liu & Hongxin Liu & Zhifu Zhang & Xirui Zhang, 2023. "Research on Cutting Angle Design Optimization of Rubber Cutter Based on Discrete Element Method," Agriculture, MDPI, vol. 13(10), pages 1-20, September.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1894-:d:1249085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/1894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/1894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meimei Wang & Qingting Liu & Yinggang Ou & Xiaoping Zou, 2022. "Numerical Simulation and Verification of Seed-Filling Performance of Single-Bud Billet Sugarcane Seed-Metering Device Based on EDEM," Agriculture, MDPI, vol. 12(7), pages 1-11, July.
    2. Hongbo Zhao & Yuxiang Huang & Zhengdao Liu & Wenzheng Liu & Zhiqi Zheng, 2021. "Applications of Discrete Element Method in the Research of Agricultural Machinery: A Review," Agriculture, MDPI, vol. 11(5), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhu & Xiaoning He & Shuqi Shang & Zhuang Zhao & Haiqing Wang & Ying Tan & Chengpeng Li & Dongwei Wang, 2022. "Evaluation of Soil-Cutting and Plant-Crushing Performance of Rotary Blades with Double-Eccentric Circular-Edge Curve for Harvesting Cyperus esculentus," Agriculture, MDPI, vol. 12(6), pages 1-21, June.
    2. Dongu Im & Ho-Seop Lee & Jae-Hyun Kim & Dong-Joo Moon & Tae-Ick Moon & Seung-Hwa Yu & Young-Jun Park, 2023. "Bucket Size Optimization for Metering Device in Garlic Planter Using Discrete Element Method," Agriculture, MDPI, vol. 13(6), pages 1-17, June.
    3. Zhuang Zhao & Xiaoning He & Shuqi Shang & Jialin Hou & Hao Zhu & Haiqing Wang & Yuetao Wang & Dongjie Li & Zengcun Chang & Chao Xia & Dongwei Wang, 2022. "Design and Testing of Discrete Element-Based Counter-Rotating Excavation Device for Cyperus esculentus," Agriculture, MDPI, vol. 12(10), pages 1-24, October.
    4. Yuyao Li & Jiali Fan & Zhichao Hu & Weiwen Luo & Hongguang Yang & Lili Shi & Feng Wu, 2022. "Calibration of Discrete Element Model Parameters of Soil around Tubers during Potato Harvesting Period," Agriculture, MDPI, vol. 12(9), pages 1-16, September.
    5. Long Wang & Jianfei Xing & Xiaowei He & Xin Li & Wensong Guo & Xufeng Wang & Shulin Hou, 2023. "Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    6. Wang Yang & Jinfei Zhao & Xinying Liu & Linqiao Xi & Jiean Liao, 2022. "Simulation and Test of “Separated Burying Device” of Green Manure Returning Machine Based on the EDEM Software," Agriculture, MDPI, vol. 12(5), pages 1-15, April.
    7. Yang Jiang & Yurong Tang & Wen Li & Yong Zeng & Xiaolong Li & Yang Liu & Hong Zhang, 2022. "Determination Method of Core Parameters for the Mechanical Classification Simulation of Thin-Skinned Walnuts," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
    8. Quandong Liu & Wei Sun & Hucun Wang & Yangrong Meng, 2023. "Design and Field Test of a Leaping Type Soil-Covering Device on Plastic Film," Agriculture, MDPI, vol. 13(9), pages 1-17, August.
    9. Xun He & Yanliu Lv & Zhe Qu & Wanzhang Wang & Zheng Zhou & Hao He, 2022. "Parameters Optimization and Test of Caterpillar Self-Propelled Tiger Nut Harvester Hoisting Device," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    10. Yao Hu & Wei Xiang & Yiping Duan & Bo Yan & Lan Ma & Jiajie Liu & Jiangnan Lyu, 2023. "Calibration of Ramie Stalk Contact Parameters Based on the Discrete Element Method," Agriculture, MDPI, vol. 13(5), pages 1-32, May.
    11. Emmanuel Awuah & Kojo Atta Aikins & Diogenes L. Antille & Jun Zhou & Bertrand Vigninou Gbenontin & Peter Mecha & Zian Liang, 2023. "Discrete Element Method Simulation and Field Evaluation of a Vibrating Root-Tuber Shovel in Cohesive and Frictional Soils," Agriculture, MDPI, vol. 13(8), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1894-:d:1249085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.