IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p717-d1102618.html
   My bibliography  Save this article

Changes in the Growth and Yield of an Extremely Early-Maturing Rice Variety According to Transplanting Density

Author

Listed:
  • Yeotae Yun

    (Crop Research Department, Chungcheongnam-do Agricultural Research and Extension Services, Yesan-gun 340861, Republic of Korea)

Abstract

This study investigated the impact of transplanting density on the growth and yield characteristics of an extremely early-maturing rice variety that has a short vegetative growth period, as the limited growth period results in reduced tiller development and leads to a lower yield. The experiment was conducted in 2019 and 2020 at Chungcheongnam-do Agricultural Research and Extension Services in Republic of Korea, where various transplanting density treatments were tested using the Bbareumi rice variety with a vegetative growth period of less than 50 days. The results showed that the tiller number seedling −1 and spikelet number m −2 were influenced by the transplanting density and had a significant impact on the milled rice yield. Decreasing the tiller number seedling −1 by increasing the transplanting density led to an increase in the spikelet number m −2 , which significantly improve the milled rice yield. Furthermore, the study identified the optimal transplanting density for maximizing yield as a transplanting distance of 30 × 12 cm, with 12 seedlings hill −1 , which resulted in the highest milled rice yield of 5.64 ton/ha. These findings provide valuable insights for rice farmers and researchers regarding efforts to improve the cultivation practices of extremely early-maturing rice varieties.

Suggested Citation

  • Yeotae Yun, 2023. "Changes in the Growth and Yield of an Extremely Early-Maturing Rice Variety According to Transplanting Density," Agriculture, MDPI, vol. 13(3), pages 1-12, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:717-:d:1102618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Yu & J. Stephen Clark & Qingsong Tian & Fengxian Yan, 2022. "Rice yield response to climate and price policy in high-latitude regions of China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1143-1157, October.
    2. Boon Teck Tan & Pei Shan Fam & R. B. Radin Firdaus & Mou Leong Tan & Mahinda Senevi Gunaratne, 2021. "Impact of Climate Change on Rice Yield in Malaysia: A Panel Data Analysis," Agriculture, MDPI, vol. 11(6), pages 1-17, June.
    3. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Yin & Zhanli Sun & Liangzhi You & Daniel Müller, 2024. "Determinants of changes in harvested area and yields of major crops in China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 16(2), pages 339-351, April.
    2. Espoir Mukengere Bagula & Jackson-Gilbert Mwanjalolo Majaliwa & Twaha Ali Basamba & Jean-Gomez Mubalama Mondo & Bernard Vanlauwe & Geofrey Gabiri & John-Baptist Tumuhairwe & Gustave Nachigera Mushagal, 2022. "Water Use Efficiency of Maize ( Zea mays L.) Crop under Selected Soil and Water Conservation Practices along the Slope Gradient in Ruzizi Watershed, Eastern D.R. Congo," Land, MDPI, vol. 11(10), pages 1-20, October.
    3. Chandio, Abbas Ali & Ozdemir, Dicle & Jiang, Yuansheng, 2023. "Modelling the impact of climate change and advanced agricultural technologies on grain output: Recent evidence from China," Ecological Modelling, Elsevier, vol. 485(C).
    4. Sebastian Parra-Londono & Jaime Andres Tigreros & Carlos Alberto Montoya-Correa, 2024. "Colombian Crop Resilience: Evaluating National Yield Stability for Fruit and Vegetable Systems," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    5. Aziiba Emmanuel Asibi & Falong Hu & Zhilong Fan & Qiang Chai, 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    6. Dejan Simić & Borivoj Pejić & Goran Bekavac & Ksenija Mačkić & Bojan Vojnov & Ivana Bajić & Vladimir Sikora, 2023. "Effect of Different ET-Based Irrigation Scheduling on Grain Yield and Water Use Efficiency of Drip Irrigated Maize," Agriculture, MDPI, vol. 13(10), pages 1-21, October.
    7. Saeed Solaymani, 2023. "Impacts of Environmental Variables on Rice Production in Malaysia," World, MDPI, vol. 4(3), pages 1-17, July.
    8. Mahinda Senevi Gunaratne & R. B. Radin Firdaus & Shamila Indika Rathnasooriya, 2021. "Climate change and food security in Sri Lanka: towards food sovereignty," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-14, December.
    9. Shizhen Bai & Xuelian Jia, 2022. "Agricultural Supply Chain Financing Strategies under the Impact of Risk Attitudes," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    10. Guoqiang Zhang & Dongping Shen & Bo Ming & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2022. "Optimizing Planting Density to Increase Maize Yield and Water Use Efficiency and Economic Return in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(9), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:717-:d:1102618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.