IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p234-d743197.html
   My bibliography  Save this article

Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China

Author

Listed:
  • Aziiba Emmanuel Asibi

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
    Council for Scientific and Industrial Research—Savanna Agricultural Research Institute, Bawku P.O. Box 46, Ghana)

  • Falong Hu

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Zhilong Fan

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

  • Qiang Chai

    (State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
    College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China)

Abstract

Nitrogen is a key factor in maize ( Zea mays L.) grain and biomass production. Inappropriate application with sub-optimum plant density and irrigation can lead to low productivity and inefficient use. A two-year field experiment was conducted to determine which nitrogen rate, plant density, and irrigation level optimize grain, biomass yield, and water use efficiency. Three nitrogen rates of urea (46–0–0 of N–P 2 O 5 –K 2 O) (N0 = 0 kg N ha −1 , N1 = 270 kg N ha −1 , and N2 = 360 kg N ha −1 ), with three maize densities (D1 = 75,000 plants ha −1 , D2 = 97,500 plants ha −1 , and D3 = 120,000 plants ha −1 ), and two irrigation levels (W1 = 5250 m 3 /hm 2 and W2 = 4740 m 3 /hm 2 ) were investigated. The results show that both grain and biomass yields were affected by the main factors. The interaction between nitrogen rate and irrigation level significantly ( p < 0.001) affected grain yield but not biomass. It was observed that the grain yield increased correspondingly with nitrogen rate and plant density, while it decreased as the irrigation level increased. Water use efficiency was significantly ( p < 0.001) affected by the main factors and their interactions. Nevertheless, water use efficiency was highest at (5250 m 3 /hm 2 ) × 270 kg N ha −1 ; × 360 kg N ha −1 × 120,000 plants ha −1 and increased from 62% to 68%. In addition, the highest biomass yield was recorded at 5250 m 3 /hm 2 × 270 kg N ha −1 ; × 360 kg N ha −1 × 120,000 plants ha −1 while the interaction of either irrigation level with 0 and 270 kg ha −1 or 97,500 and 120,000 plants ha −1 yielded the lowest water use efficiency. Thus, optimized nitrogen rates, plant density, and alternate irrigation levels can support optimum grain and biomass yields. It can also improve nitrogen and water use efficiency in maize production.

Suggested Citation

  • Aziiba Emmanuel Asibi & Falong Hu & Zhilong Fan & Qiang Chai, 2022. "Optimized Nitrogen Rate, Plant Density, and Regulated Irrigation Improved Grain, Biomass Yields, and Water Use Efficiency of Maize at the Oasis Irrigation Region of China," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:234-:d:743197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Heping & Oweis, Theib, 1999. "Water-yield relations and optimal irrigation scheduling of wheat in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 38(3), pages 195-211, January.
    2. Kuo, Sheng-Feng & Ho, Shin-Shen & Liu, Chen-Wuing, 2006. "Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan," Agricultural Water Management, Elsevier, vol. 82(3), pages 433-451, April.
    3. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2002. "Production of muskmelon (Cucumis melo L.) under controlled deficit irrigation in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 54(2), pages 93-105, March.
    4. Guoqiang Zhang & Bo Ming & Dongping Shen & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2021. "Optimizing Grain Yield and Water Use Efficiency Based on the Relationship between Leaf Area Index and Evapotranspiration," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    5. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    6. Zhang, Jiyang & Sun, Jingsheng & Duan, Aiwang & Wang, Jinglei & Shen, Xiaojun & Liu, Xiaofei, 2007. "Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 41-47, August.
    7. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Xiaofan & Zhang, Hengjia & Yu, Shouchao & Deng, Haoliang & Chen, Xietian & Zhou, Chenli & Li, Fuqiang, 2024. "Strategies for the management of water and nitrogen interaction in seed maize production; A case study from China Hexi Corridor Oasis Agricultural Area," Agricultural Water Management, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    3. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    4. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    5. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    6. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    7. B. Varga & E. Varga-László & S. Bencze & K. Balla & O. Veisz, 2013. "Water use of winter cereals under well-watered and drought-stressed conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(4), pages 150-155.
    8. Metin Sezen, S. & Yazar, Attila, 2006. "Wheat yield response to line-source sprinkler irrigation in the arid Southeast Anatolia region of Turkey," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 59-76, March.
    9. Wakchaure, G.C. & Minhas, P.S. & Ratnakumar, P. & Choudhary, R.L., 2016. "Optimising supplemental irrigation for wheat (Triticum aestivum L.) and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in India," Agricultural Water Management, Elsevier, vol. 172(C), pages 9-17.
    10. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    11. Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
    12. Zhang, Yongqiang & Kendy, Eloise & Qiang, Yu & Changming, Liu & Yanjun, Shen & Hongyong, Sun, 2004. "Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(2), pages 107-122, January.
    13. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2016. "Determining water use efficiency for wheat and cotton: A meta-regression analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236059, Agricultural and Applied Economics Association.
    14. Abdul Latief A. Al-Ghzawi & Yahya Bani Khalaf & Zakaria I. Al-Ajlouni & Nisreen A. AL-Quraan & Iyad Musallam & Nabeel Bani Hani, 2018. "The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat ( Triticum aestivum L. and T. durum Desf.) Varieties Grown in Dry R," Agriculture, MDPI, vol. 8(5), pages 1-23, May.
    15. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    16. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    17. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Wei, Ting & Ren, Xiaolong & Zhang, Peng & Din, Ruixia & Cai, Tie & Jia, Zhikuan, 2018. "Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 207-218.
    18. Wang, Xiquan & Nie, Jiangwen & Wang, Peixin & Zhao, Jie & Yang, Yadong & Wang, Shang & Zeng, Zhaohai & Zang, Huadong, 2021. "Does the replacement of chemical fertilizer nitrogen by manure benefit water use efficiency of winter wheat – summer maize systems?," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ma, Xiangcheng & Ahmad, Irshad & Adnan, Muhammad & Gerard, Rushingabigwi & Ren, Xiaolong & Zhang, Peng & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2018. "Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions," Agricultural Water Management, Elsevier, vol. 207(C), pages 1-14.
    20. Wang, Wangtian & Ma, Li & Wu, Junyan & Sun, Wancang & Ali, Shahzad & Yang, Gang & Pu, Yuanyuan & Liu, Lijun & Fang, Yan, 2023. "Cultivation practices with various mulching materials to regulate chlorophyll fluorescence, cuticular wax, and rapeseed productivity under semi-arid regions," Agricultural Water Management, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:234-:d:743197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.