IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p2036-d1265264.html
   My bibliography  Save this article

Optimization and Accuracy Analysis of a Soil–Planter Model during the Sowing Period of Wheat after a Rice Stubble Based Discrete Element Method

Author

Listed:
  • Weiwen Luo

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Xulei Chen

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Kai Guo

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Mingyang Qin

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Feng Wu

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

  • Fengwei Gu

    (Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100083, China)

  • Zhichao Hu

    (Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China)

Abstract

The soil during the sowing period of wheat after rice stubble cannot be accurately described by existing models and parameters with DEM because of its high moisture content and strong viscosity. The purpose of this study is to conduct an overall simulation of high-viscosity paddy soil and to analyze the accuracy of the model. Based on the results of an unconfined compression test and shear test, the range of bond parameters is preliminarily determined by a simulation test. Through the P-BD test and RSM test, the parameters with significant influence are determined to be normal stiffness per unit area ( S N ), shear stiffness per unit area ( S S ), and critical shear stress ( C S ), and an optimized combination of these parameters is obtained. Based on the optimized model, the error range and error generation mechanism of the model are analyzed under different operating parameters. The results show that the optimal parameter combination is S N of 1.07 × 10 7 N/m 3 , S S of 0.70 × 10 7 N/m 3 , and C S of 0.35 × 10 5 Pa, corresponding to a compression force of 120.1 N and a shear force of 7.70 N. With an increase in forward speed or seeding quantity or a decrease in rotary plowing speed, the model accuracy tends to increase, and the range of relative errors was found to be from 8.8% to 28.4%. The results can provide a research basis for the study of the motion state of seeds under soil. It can also further enrich parameter data of soil discrete element simulation models and provide a reference for related research studies.

Suggested Citation

  • Weiwen Luo & Xulei Chen & Kai Guo & Mingyang Qin & Feng Wu & Fengwei Gu & Zhichao Hu, 2023. "Optimization and Accuracy Analysis of a Soil–Planter Model during the Sowing Period of Wheat after a Rice Stubble Based Discrete Element Method," Agriculture, MDPI, vol. 13(10), pages 1-16, October.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:2036-:d:1265264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/2036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/2036/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kojo Atta Aikins & Mustafa Ucgul & James B. Barr & Emmanuel Awuah & Diogenes L. Antille & Troy A. Jensen & Jacky M. A. Desbiolles, 2023. "Review of Discrete Element Method Simulations of Soil Tillage and Furrow Opening," Agriculture, MDPI, vol. 13(3), pages 1-29, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo-Min Bae & Yeon-Soo Kim & Wan-Soo Kim & Yong-Joo Kim & Sang-Dae Lee & Taek-Jin Kim, 2023. "The Development of a Draft Force Prediction Model for Agricultural Tractors Based on the Discrete Element Method in Loam and Clay Loam," Agriculture, MDPI, vol. 13(12), pages 1-17, November.
    2. Long Wang & Jianfei Xing & Xiaowei He & Xin Li & Wensong Guo & Xufeng Wang & Shulin Hou, 2023. "Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    3. Mustafa Ucgul & Chung-Liang Chang, 2023. "Design and Application of Agricultural Equipment in Tillage Systems," Agriculture, MDPI, vol. 13(4), pages 1-3, March.
    4. Zhenwei Tong & Hongwen Li & Jin He & Qingjie Wang & Caiyun Lu & Chao Wang & Guangyuan Zhong & Dandan Cui & Dengkun Li, 2023. "Design and Experiment of In Situ Soil-Lifting Shovel for Direct-Injection Straw Deep-Burial Machine," Agriculture, MDPI, vol. 13(9), pages 1-19, August.
    5. Kehong Yan & Shuai Yao & Yicheng Huang & Zhan Zhao, 2023. "Study on Pulling Dynamic Characteristics of White Radish and the Optimal Design of a Harvesting Device," Agriculture, MDPI, vol. 13(5), pages 1-14, April.
    6. Hao Zhou & Kangtai Li & Zhiyu Qin & Shengsheng Wang & Xuezhen Wang & Fengyun Sun, 2024. "Discrete Element Model of Oil Peony Seeds and the Calibration of Its Parameters," Agriculture, MDPI, vol. 14(7), pages 1-13, July.
    7. Emmanuel Awuah & Kojo Atta Aikins & Diogenes L. Antille & Jun Zhou & Bertrand Vigninou Gbenontin & Peter Mecha & Zian Liang, 2023. "Discrete Element Method Simulation and Field Evaluation of a Vibrating Root-Tuber Shovel in Cohesive and Frictional Soils," Agriculture, MDPI, vol. 13(8), pages 1-22, July.
    8. Xiaoming Jin & Fangping Ma & Di Wang & Zhengtao Zhu, 2023. "Simulation of Mouldboard Plough Soil Cutting Based on Smooth Particle Hydrodynamics Method and FEM–SPH Coupling Method," Agriculture, MDPI, vol. 13(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:2036-:d:1265264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.