IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2022i1p76-d1016228.html
   My bibliography  Save this article

Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt

Author

Listed:
  • Mohamed E. Abowaly

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

  • Raafat A. Ali

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

  • Farahat S. Moghanm

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

  • Mohamed S. Gharib

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

  • Moustapha Eid Moustapha

    (Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Mohssen Elbagory

    (Department of Biology, Faculty of Science and Arts, King Khalid University, Mohail 61321, Saudi Arabia
    Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Alaa El-Dein Omara

    (Agricultural Research Center, Department of Microbiology, Soils, Water and Environment Research Institute, Giza 12112, Egypt)

  • Shimaa M. Elmahdy

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt)

Abstract

Soil degradation and pollution is one of the main problems threatening the sustainable development of agriculture. This study used remote sensing and geographic information system (GIS) techniques to assess the risks of soil degradation and the risks of heavy metals in some soils north of the Nile Delta. The study area suffers from salinity, alkalinity, and water logging, so a spatial degradation model was used. Relying on landsat ETM+ images and the digital elevation model (DEM), it was possible to produce a geomorphological map, and it showed that the studied area consists of two landscapes, i.e., flood plain and lacustrine plain. The results indicated that salinization, alkalization, compaction, and water logging were the main types of soil degradation in the studied area. The spatial land degradation model showed that 16.61% of soils were affected by low degrees of degradation, 74.03% were affected by moderate degrees, and 9.36% were affected by high degrees of degradation. The studied area was affected by chemical degradation risks between low and high at 90.62% and 9.37%, respectively, while the physical degradation risks varied between low, moderate, high, and very high with percentages of 9.37%, 41.53%, 40.14%, and 8.93%, respectively. The environmental risks of heavy metals were assessed in the studied area using pollution indices including, the enrichment factor (EF), the pollution load index (PLI), and the potential ecological risk index (PER).

Suggested Citation

  • Mohamed E. Abowaly & Raafat A. Ali & Farahat S. Moghanm & Mohamed S. Gharib & Moustapha Eid Moustapha & Mohssen Elbagory & Alaa El-Dein Omara & Shimaa M. Elmahdy, 2022. "Assessment of Soil Degradation and Hazards of Some Heavy Metals, Using Remote Sensing and GIS Techniques in the Northern Part of the Nile Delta, Egypt," Agriculture, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:76-:d:1016228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/76/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/76/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    2. Mohamed E. Abowaly & Abdel-Aziz A. Belal & Enas E. Abd Elkhalek & Salah Elsayed & Rasha M. Abou Samra & Abdullah S. Alshammari & Farahat S. Moghanm & Kamal H. Shaltout & Saad A. M. Alamri & Ebrahem M., 2021. "Assessment of Soil Pollution Levels in North Nile Delta, by Integrating Contamination Indices, GIS, and Multivariate Modeling," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    3. Haifang He & Longqing Shi & Guang Yang & Minsheng You & Liette Vasseur, 2020. "Ecological Risk Assessment of Soil Heavy Metals and Pesticide Residues in Tea Plantations," Agriculture, MDPI, vol. 10(2), pages 1-10, February.
    4. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monther M. Tahat & Kholoud M. Alananbeh & Yahia A. Othman & Daniel I. Leskovar, 2020. "Soil Health and Sustainable Agriculture," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    2. Mohamed S. Shokr & Mostafa. A. Abdellatif & Ahmed A. El Baroudy & Abdelrazek Elnashar & Esmat F. Ali & Abdelaziz A. Belal & Wael. Attia & Mukhtar Ahmed & Ali A. Aldosari & Zoltan Szantoi & Mohamed E. , 2021. "Development of a Spatial Model for Soil Quality Assessment under Arid and Semi-Arid Conditions," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    3. Honglei Jiang & Xia Xu & Mengxi Guan & Lingfei Wang & Yongmei Huang & Yinghui Liu, 2019. "Simulation of Spatiotemporal Land Use Changes for Integrated Model of Socioeconomic and Ecological Processes in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    4. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    5. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    6. Danica Fazekašová & František Petrovič & Juraj Fazekaš & Lenka Štofejová & Ivan Baláž & Filip Tulis & Tomáš Tóth, 2021. "Soil Contamination in the Problem Areas of Agrarian Slovakia," Land, MDPI, vol. 10(11), pages 1-14, November.
    7. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    8. Io Carydi & Athanasios Koutsianas & Marios Desyllas, 2023. "People, Crops, and Bee Farming: Landscape Models for a Symbiotic Network in Greece," Land, MDPI, vol. 12(2), pages 1-25, February.
    9. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    10. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    11. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    12. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    14. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    15. Marco Bascietto & Enrico Santangelo & Claudio Beni, 2021. "Spatial Variations of Vegetation Index from Remote Sensing Linked to Soil Colloidal Status," Land, MDPI, vol. 10(1), pages 1-15, January.
    16. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    17. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    18. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    19. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    20. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2022:i:1:p:76-:d:1016228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.