IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1440-d912536.html
   My bibliography  Save this article

Species Identification of Caterpillar Eggs by Machine Learning Using a Convolutional Neural Network and Massively Parallelized Microscope

Author

Listed:
  • John Efromson

    (Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
    Ramona Optics Inc., Durham, NC 27701, USA)

  • Roger Lawrie

    (Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
    Center for Excellence in Quarantine and Invasive Species, University of Puerto Rico, San Juan, PR 00926, USA)

  • Thomas Jedidiah Jenks Doman

    (Ramona Optics Inc., Durham, NC 27701, USA)

  • Matthew Bertone

    (Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA)

  • Aurélien Bègue

    (Ramona Optics Inc., Durham, NC 27701, USA)

  • Mark Harfouche

    (Ramona Optics Inc., Durham, NC 27701, USA)

  • Dominic Reisig

    (Department of Entomology and Plant Pathology, North Carolina State University, The Vernon James Center, Plymouth, NC 27962, USA)

  • R. Michael Roe

    (Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA)

Abstract

Rapid, accurate insect identification is the first and most critical step of pest management and vital to agriculture for determining optimal management strategies. In many instances, classification is necessary within a short developmental window. Two examples, the tobacco budworm, Chloridea virescens , and bollworm, Helicoverpa zea , both have <5 days from oviposition until hatching. H. zea has evolved resistance to Bt-transgenic crops and requires farmers to decide about insecticide application during the ovipositional window. The eggs of these species are small, approximately 0.5 mm in diameter, and often require a trained biologist and microscope to resolve morphological differences between species. In this work, we designed, built, and validated a machine learning approach to insect egg identification with >99% accuracy using a convolutional neural architecture to classify the two species of caterpillars. A gigapixel scale parallelized microscope, referred to as the Multi-Camera Array Microscope (MCAM™), and automated image-processing pipeline allowed us to rapidly build a dataset of ~5500 images for training and testing the network. In the future, applications could be developed enabling farmers to photograph eggs on a leaf and receive an immediate species identification before the eggs hatch.

Suggested Citation

  • John Efromson & Roger Lawrie & Thomas Jedidiah Jenks Doman & Matthew Bertone & Aurélien Bègue & Mark Harfouche & Dominic Reisig & R. Michael Roe, 2022. "Species Identification of Caterpillar Eggs by Machine Learning Using a Convolutional Neural Network and Massively Parallelized Microscope," Agriculture, MDPI, vol. 12(9), pages 1-11, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1440-:d:912536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    2. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    3. Kin-Ping Hui, 2011. "Cooperative Cross-Entropy method for generating entangled networks," Annals of Operations Research, Springer, vol. 189(1), pages 205-214, September.
    4. Mathieu Balesdent & Jérôme Morio & Loïc Brevault, 2016. "Rare Event Probability Estimation in the Presence of Epistemic Uncertainty on Input Probability Distribution Parameters," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 197-216, March.
    5. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    6. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    7. Lvyang Qiu & Shuyu Li & Yunsick Sung, 2021. "3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on a Deep 3D Convolutional Denoising Autoencoder for Music Genre Classification," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    9. Akimoto, Youhei & Auger, Anne & Hansen, Nikolaus, 2022. "An ODE method to prove the geometric convergence of adaptive stochastic algorithms," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 269-307.
    10. Anastasia Spiliopoulou & Ioannis Papamichail & Markos Papageorgiou & Yannis Tyrinopoulos & John Chrysoulakis, 2017. "Macroscopic traffic flow model calibration using different optimization algorithms," Operational Research, Springer, vol. 17(1), pages 145-164, April.
    11. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    12. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    13. Zhang, Yali & Shang, Pengjian, 2019. "Multivariate multiscale distribution entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 72-80.
    14. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    15. A. Gouda & T. Szántai, 2008. "Rare event probabilities in stochastic networks," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 16(4), pages 441-461, December.
    16. Liang Huang & Juanjuan Zhu & Mulan Qiu & Xiaoxiang Li & Shasha Zhu, 2022. "CA-BASNet: A Building Extraction Network in High Spatial Resolution Remote Sensing Images," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    17. Reuven Y. Rubinstein, 2006. "How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 5-51, March.
    18. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    19. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    20. Wu, Xin & Nie, Lei & Xu, Meng, 2017. "Robust fuzzy quality function deployment based on the mean-end-chain concept: Service station evaluation problem for rail catering services," European Journal of Operational Research, Elsevier, vol. 263(3), pages 974-995.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1440-:d:912536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.