IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p622-d803578.html
   My bibliography  Save this article

Conservation Agriculture in Semi-Arid Zimbabwe: A Promising Practice to Improve Finger Millet ( Eleusine coracana Gaertn.) Productivity and Soil Water Availability in the Short Term

Author

Listed:
  • Vengai Mbanyele

    (Department of Soil Science and Environment, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
    Soil Fertility Consortium for Southern Africa (SOFECSA) Research Group, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe)

  • Florence Mtambanengwe

    (Department of Soil Science and Environment, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
    Soil Fertility Consortium for Southern Africa (SOFECSA) Research Group, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe)

  • Hatirarami Nezomba

    (Department of Soil Science and Environment, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
    Soil Fertility Consortium for Southern Africa (SOFECSA) Research Group, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe)

  • Jairos Rurinda

    (Department of Soil Science and Environment, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
    Soil Fertility Consortium for Southern Africa (SOFECSA) Research Group, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe)

  • Paul Mapfumo

    (Department of Soil Science and Environment, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
    Soil Fertility Consortium for Southern Africa (SOFECSA) Research Group, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe)

Abstract

Increasing within-season dry spells in Southern Africa in recent years have generated growing interest in conservation agriculture (CA) to secure crop yields, especially under rainfed systems. This study aimed to evaluate the effects of CA on finger millet’s ( Eleusine coracana (L.) Gaertn) growth, yield and water use efficiency on nutrient-depleted sandy soils. Five treatments, namely (conventional tillage (control), conventional tillage + mulch (partial CA1), reduced tillage only (partial CA2), reduced tillage + mulching (partial CA3) and reduced tillage + mulching + intercropping (full CA)) were evaluated over two consecutive cropping seasons (2015/16 and 2016/17) on-farm in the village of Chidora in Hwedza District, southeast Zimbabwe. All mulched treatments had 15–32% more soil water content over the two growing seasons compared to the control. The higher soil water content under the mulched treatments significantly improved finger millet growth and development during both seasons as evidenced by the lower number of days to emergence (3 days less), greater shoot biomass, higher number of productive tillers and higher number of fingers produced. The full CA treatment achieved the best finger millet grain yield of 1.07 and 1.29 t ha −1 during the 2015/16 and 2016/17 seasons, respectively. Full CA, partial CA3 and partial CA1 increased finger millet grain yield by 70%, 14% and 17% during the 2015/16 cropping season compared to the control. During the 2016/17 cropping season, a similar trend in finger millet grain yield was observed. Full CA was also among the most efficient methods in terms of water utilization (WUE), especially during the 2015/16 season. We concluded that CA, particularly when practiced in full, was more effective at offsetting the water limitations imposed by intra-seasonal dry spells on finger millet and significantly improved productivity.

Suggested Citation

  • Vengai Mbanyele & Florence Mtambanengwe & Hatirarami Nezomba & Jairos Rurinda & Paul Mapfumo, 2022. "Conservation Agriculture in Semi-Arid Zimbabwe: A Promising Practice to Improve Finger Millet ( Eleusine coracana Gaertn.) Productivity and Soil Water Availability in the Short Term," Agriculture, MDPI, vol. 12(5), pages 1-17, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:622-:d:803578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/622/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    2. Mazvimavi, Kizito & Twomlow, Steve, 2009. "Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe," Agricultural Systems, Elsevier, vol. 101(1-2), pages 20-29, June.
    3. Adane Gebreyohannes & Hussein Shimelis & Mark Laing & Isack Mathew & Damaris A. Odeny & Henry Ojulong, 2021. "Finger Millet Production in Ethiopia: Opportunities, Problem Diagnosis, Key Challenges and Recommendations for Breeding," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    4. Vibeke Bjornlund & Henning Bjornlund & Andre F. Van Rooyen, 2020. "Why agricultural production in sub-Saharan Africa remains low compared to the rest of the world – a historical perspective," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 36(S1), pages 20-53, October.
    5. Nyakudya, I.W. & Stroosnijder, L., 2011. "Water management options based on rainfall analysis for rainfed maize (Zea mays L.) production in Rushinga district, Zimbabwe," Agricultural Water Management, Elsevier, vol. 98(10), pages 1649-1659, August.
    6. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    7. Fang, Q. & Ma, L. & Yu, Q. & Ahuja, L.R. & Malone, R.W. & Hoogenboom, G., 2010. "Irrigation strategies to improve the water use efficiency of wheat-maize double cropping systems in North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1165-1174, August.
    8. Miriti, J.M. & Kironchi, G. & Esilaba, A.O. & Heng, L.K. & Gachene, C.K.K. & Mwangi, D.M., 2012. "Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya," Agricultural Water Management, Elsevier, vol. 115(C), pages 148-155.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shanshan & Zhang, Jiahua & Wang, Jingwen & Zhang, Sha & Bai, Yun & Shi, Siqi & Cao, Dan, 2022. "Spatiotemporal variations of water productivity for cropland and driving factors over China during 2001–2015," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Yin, Wen & Chai, Qiang & Zhao, Cai & Yu, Aizhong & Fan, Zhilong & Hu, Falong & Fan, Hong & Guo, Yao & Coulter, Jeffrey A., 2020. "Water utilization in intercropping: A review," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Farooq, Muhammad & Hussain, Mubshar & Ul-Allah, Sami & Siddique, Kadambot H.M., 2019. "Physiological and agronomic approaches for improving water-use efficiency in crop plants," Agricultural Water Management, Elsevier, vol. 219(C), pages 95-108.
    4. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    5. Tuchapong Suwongsa & Kongpol Areerak & Kongpan Areerak & Jakkrit Pakdeeto, 2021. "Energy Saving Approach for an Electric Pump Using a Fuzzy Controller," Energies, MDPI, vol. 14(11), pages 1-14, June.
    6. Jaleta, Moti & Kassie, Menale & Shiferaw, Bekele A., 2012. "Tradeoffs in Crop Residue Utilization in Mixed Crop-Livestock Systems and Implications for Conservation Agriculture and Sustainable Land Management," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126282, International Association of Agricultural Economists.
    7. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    8. Abadi, Bijan & Yadollahi, Arash & Bybordi, Ahmad & Rahmati, Mehdi, 2020. "The discrimination of adopters and non-adopters of conservation agricultural initiatives in northwest Iran: Attitudinal, soil testing, and topographical modules," Land Use Policy, Elsevier, vol. 95(C).
    9. Pedzisa, Tarisayi & Rugube, Lovemore & Winter-Nelson, Alex & Baylis, Kathy & Mazvimavi, Kizito, 2016. "The Intensity of adoption of Conservation agriculture by smallholder farmers in Zimbabwe," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 54(3), January.
    10. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    11. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    12. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    14. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    15. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    16. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    17. França, Ana Carolina Ferreira & Coelho, Rubens Duarte & da Silva Gundim, Alice & de Oliveira Costa, Jéfferson & Quiloango-Chimarro, Carlos Alberto, 2024. "Effects of different irrigation scheduling methods on physiology, yield, and irrigation water productivity of soybean varieties," Agricultural Water Management, Elsevier, vol. 293(C).
    18. Ma, Shou-tian & Wang, Tong-chao & Ma, Shou-Chen, 2022. "Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat," Agricultural Water Management, Elsevier, vol. 271(C).
    19. Petan Hamazakaza & Gillian Kabwe & Elias Kuntashula & Anthony Egeru & Robert Asiimwe, 2022. "Adoption of Sustainable Agriculture Intensification in Maize-Based Farming Systems of Katete District in Zambia," Land, MDPI, vol. 11(6), pages 1-15, June.
    20. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:622-:d:803578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.