IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p399-d769958.html
   My bibliography  Save this article

Development and Application of a Water and Salt Balance Model for Well-Canal Conjunctive Irrigation in Semiarid Areas with Shallow Water Tables

Author

Listed:
  • Yannan Liu

    (Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Yan Zhu

    (Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Wei Mao

    (Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Guanfang Sun

    (Institute of Soil and Water Conservation, Northwest A&F University, Xianyang 712100, China)

  • Xudong Han

    (Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Jingwei Wu

    (Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

  • Jinzhong Yang

    (Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China)

Abstract

Irrigated agriculture in arid and semi-arid regions is seriously threatened by water shortage and soil salinization. The well-canal conjunctive irrigation scheme provides a stable groundwater resource for irrigation and can reduce surface salt accumulation by decreasing the groundwater levels, which makes it more suitable to alleviate the problems of irrigated agriculture in arid and semi-arid regions. However, the soil salinization process requires assessment on regional spatial and decadal time scales, as it is a continuous but slow change. Therefore, a water and salt balance model (WSBM) for well-canal conjunctive irrigation is developed herein to obtain long-term predictions of regional root zone salinity dynamics in canal- and well-irrigated areas. In the developed model, the characteristic length of the well-canal conjunctive irrigated area ( L c ) is used to couple the canal- and well-irrigated areas. The performance of the WSBM as well as a sensitivity analysis and the value rule of the special parameter L c are evaluated by comparing the simulation results with those derived from the MODFLOW. The results demonstrate the validity of the developed model, and the special parameter L c is found to be insensitive, with a value approximately two-thirds of the center distance when the canal and well irrigation districts are regularly adjacent or centrosymmetric. Moreover, when a real-world application is adopted, the water table depth and root-zone soil salinity are simulated in the Longsheng well-canal irrigation area in the Hetao Irrigation District, Inner Mongolia, China. Water table depth and soil salinity collected from 2002–2005 and from 2006–2020 are used to calibrate and validate the model. The calibrated model is subsequently used to predict soil salinity dynamics in the next 100 years under current and future water-saving conditions. The predictions indicate that the soil salinity is basically stable at a relatively low level (<0.2 kg/100 kg) under current irrigation practices. The study could support planning making before implementation of well-canal conjunctive irrigation.

Suggested Citation

  • Yannan Liu & Yan Zhu & Wei Mao & Guanfang Sun & Xudong Han & Jingwei Wu & Jinzhong Yang, 2022. "Development and Application of a Water and Salt Balance Model for Well-Canal Conjunctive Irrigation in Semiarid Areas with Shallow Water Tables," Agriculture, MDPI, vol. 12(3), pages 1-25, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:399-:d:769958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    2. Renji Remesan & Arjun Prabhakaran & Macariush N. Sangma & Sreekanth Janardhanan & Mohammed Mainuddin & Sukanta K. Sarangi & Uttam Kumar Mandal & Dhiman Burman & Sukamal Sarkar & Kshirenda Kumar Mahant, 2021. "Modeling and Management Option Analysis for Saline Groundwater Drainage in a Deltaic Island," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    3. Mao, Wei & Yang, Jinzhong & Zhu, Yan & Ye, Ming & Wu, Jingwei, 2017. "Loosely coupled SaltMod for simulating groundwater and salt dynamics under well-canal conjunctive irrigation in semi-arid areas," Agricultural Water Management, Elsevier, vol. 192(C), pages 209-220.
    4. Liang-Cheng Chang & Chih-Chao Ho & Ming-Sheng Yeh & Chao-Chung Yang, 2011. "An Integrating Approach for Conjunctive-Use Planning of Surface and Subsurface Water System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 59-78, January.
    5. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    6. Peiyue Li & Hui Qian & Jianhua Wu, 2018. "Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 337-353, May.
    7. Yu, Ruihong & Liu, Tingxi & Xu, Youpeng & Zhu, Chao & Zhang, Qing & Qu, Zhongyi & Liu, Xiaomin & Li, Changyou, 2010. "Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China," Agricultural Water Management, Elsevier, vol. 97(12), pages 1952-1960, November.
    8. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    9. Singh, Rajinder, 2004. "Simulations on direct and cyclic use of saline waters for sustaining cotton-wheat in a semi-arid area of north-west India," Agricultural Water Management, Elsevier, vol. 66(2), pages 153-162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    3. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    6. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    7. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Du, Ruiqi & Chen, Junying & Zhang, Zhitao & Chen, Yinwen & He, Yujie & Yin, Haoyuan, 2022. "Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model," Agricultural Water Management, Elsevier, vol. 265(C).
    9. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    10. Wen, Yeqiang & Shang, Songhao & Rahman, Khalil Ur & Xia, Yuhong & Ren, Dongyang, 2020. "A semi-distributed drainage model for monthly drainage water and salinity simulation in a large irrigation district in arid region," Agricultural Water Management, Elsevier, vol. 230(C).
    11. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    12. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    13. Guoshuai Wang & Bing Xu & Pengcheng Tang & Haibin Shi & Delong Tian & Chen Zhang & Jie Ren & Zekun Li, 2022. "Modeling and Evaluating Soil Salt and Water Transport in a Cultivated Land–Wasteland–Lake System of Hetao, Yellow River Basin’s Upper Reaches," Sustainability, MDPI, vol. 14(21), pages 1-23, November.
    14. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    15. Dong, Qin’ge & Yang, Yuchen & Zhang, Tinbin & Zhou, Lifeng & He, Jianqiang & Chau, Henry Wai & Zou, Yufeng & Feng, Hao, 2018. "Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area," Agricultural Water Management, Elsevier, vol. 201(C), pages 268-277.
    16. Bai, Liangliang & Cai, Jiabing & Liu, Yu & Chen, He & Zhang, Baozhong & Huang, Lingxu, 2017. "Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin," Agricultural Water Management, Elsevier, vol. 188(C), pages 1-11.
    17. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    18. Xu Xu & Guanhua Huang & Zhongyi Qu & Luis Pereira, 2011. "Using MODFLOW and GIS to Assess Changes in Groundwater Dynamics in Response to Water Saving Measures in Irrigation Districts of the Upper Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 2035-2059, June.
    19. Ramos, Tiago B. & Liu, Meihan & Paredes, Paula & Shi, Haibin & Feng, Zhuangzhuang & Lei, Huimin & Pereira, Luis S., 2023. "Salts dynamics in maize irrigation in the Hetao plateau using static water table lysimeters and HYDRUS-1D with focus on the autumn leaching irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    20. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:399-:d:769958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.