IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v97y2010i12p1952-1960.html
   My bibliography  Save this article

Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China

Author

Listed:
  • Yu, Ruihong
  • Liu, Tingxi
  • Xu, Youpeng
  • Zhu, Chao
  • Zhang, Qing
  • Qu, Zhongyi
  • Liu, Xiaomin
  • Li, Changyou

Abstract

Remote sensing can provide base information for documenting salinity change and for predicting its future evolution trend. The spatial and temporal distributions of soil salinization of Jiefangzha Irrigation Sub-district, the western part of Hetao Irrigation District of Inner Mongolia in northern China, were determined through analysis of satellite-based remote sensing images. Three Landsat TM/ETM+ satellite images taken during 14 years (1991Â ~Â 2005) coupled with field observations were chosen as the basic data sources. Supervised classification and visual interpretation were used to analyze salinity classification and statistical method was applied to analyze the relationship between salinity and groundwater depth. From 1991 to 2005 the area of heavy saline land decreased from 191 to 136Â km2, or 3.9Â km2 per year; the moderate saline land decreased from 318 to 284Â km2, or 2.5Â km2 per year; the slight saline land decreased from 510 to 394Â km2, or 8.2Â km2 per year. Therefore, soil salinization in Jiefangzha Irrigation Sub-district is decreasing in general. The electrical conductivity (EC) values measured from field have the following relationship with the reflectance composition obtained from LANDSAT Enhanced Thematic Mapper Plus (ETM+) data: ECÂ =Â 5.653(band5Â -Â band7)/(band5Â +Â band7)Â +Â 0.246. In addition, an r2 value between EC values and groundwater depth is 0.72, which indicates groundwater depth is the major factor for the regional soil salinity control. The paper can serve as a theoretical reference for optimal allocation of irrigation water resource and salinization control in Hetao Irrigation District.

Suggested Citation

  • Yu, Ruihong & Liu, Tingxi & Xu, Youpeng & Zhu, Chao & Zhang, Qing & Qu, Zhongyi & Liu, Xiaomin & Li, Changyou, 2010. "Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China," Agricultural Water Management, Elsevier, vol. 97(12), pages 1952-1960, November.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:12:p:1952-1960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00106-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Achivir Stella Yawe & Changlai Xiao & Oluwafemi Adewole Adeyeye & Mingjun Liu & Xiaoya Feng & Xiujuan Liang, 2022. "Spatio-Temporal Evolution of the Ecological Environment in a Typical Semi-Arid Region of Northeast China," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    2. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Mao, Wei & Zhu, Yan & Wu, Jingwei & Ye, Ming & Yang, Jinzhong, 2022. "Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    5. Xu Xu & Guanhua Huang & Zhongyi Qu & Luis Pereira, 2011. "Using MODFLOW and GIS to Assess Changes in Groundwater Dynamics in Response to Water Saving Measures in Irrigation Districts of the Upper Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(8), pages 2035-2059, June.
    6. Liu, Haijun & Wang, Xuming & Zhang, Xian & Zhang, Liwei & Li, Yan & Huang, Guanhua, 2017. "Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China," Agricultural Water Management, Elsevier, vol. 179(C), pages 144-157.
    7. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    8. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    9. Bai, Liangliang & Cai, Jiabing & Liu, Yu & Chen, He & Zhang, Baozhong & Huang, Lingxu, 2017. "Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin," Agricultural Water Management, Elsevier, vol. 188(C), pages 1-11.
    10. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    11. Guanfang Sun & Yan Zhu & Zhaoliang Gao & Jinzhong Yang & Zhongyi Qu & Wei Mao & Jingwei Wu, 2022. "Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    12. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    13. Yannan Liu & Yan Zhu & Wei Mao & Guanfang Sun & Xudong Han & Jingwei Wu & Jinzhong Yang, 2022. "Development and Application of a Water and Salt Balance Model for Well-Canal Conjunctive Irrigation in Semiarid Areas with Shallow Water Tables," Agriculture, MDPI, vol. 12(3), pages 1-25, March.
    14. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    15. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.
    16. Hui Gao & Jintong Liu & A. Egrinya Eneji & Lipu Han & Limei Tan, 2016. "Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    17. Li Li & Rundong Feng & Jianchao Xi, 2021. "Ecological Risk Assessment and Protection Zone Identification for Linear Cultural Heritage: A Case Study of the Ming Great Wall," IJERPH, MDPI, vol. 18(21), pages 1-18, November.
    18. Du, Ruiqi & Chen, Junying & Zhang, Zhitao & Chen, Yinwen & He, Yujie & Yin, Haoyuan, 2022. "Simultaneous estimation of surface soil moisture and salinity during irrigation with the moisture-salinity-dependent spectral response model," Agricultural Water Management, Elsevier, vol. 265(C).
    19. Dong, Qin’ge & Yang, Yuchen & Zhang, Tinbin & Zhou, Lifeng & He, Jianqiang & Chau, Henry Wai & Zou, Yufeng & Feng, Hao, 2018. "Impacts of ridge with plastic mulch-furrow irrigation on soil salinity, spring maize yield and water use efficiency in an arid saline area," Agricultural Water Management, Elsevier, vol. 201(C), pages 268-277.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:12:p:1952-1960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.