IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p319-d755719.html
   My bibliography  Save this article

Design and Testing of Reverse-Rotating Soil-Taking-Type Hole-Forming Device of Pot Seedling Transplanting Machine for Rapeseed

Author

Listed:
  • Wei Quan

    (College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China
    College of Orient Science & Technology, Hunan Agricultural University, Changsha 410128, China)

  • Mingliang Wu

    (College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China)

  • Zhenwei Dai

    (College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China)

  • Haifeng Luo

    (College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China)

  • Fanggang Shi

    (College of Mechanical and Electrical, Hunan Agricultural University, Changsha 410128, China)

Abstract

To address the problem whereby the size of the hole formed by the existing hole-forming device of hole-punching transplanters is significantly inconsistent with the theoretical size as it is impacted by the inserting and lifting methods, a scheme for eliminating the forward speed of the whole machine by the horizontal linear velocity of reverse rotation of the hole-forming mechanism is proposed to vertically insert and lift the hole-forming device in accordance with the working characteristics of hole-punching transplanting and the agronomic requirements of rapeseed transplanting. In addition, a novel type of reverse-rotating soil-taking-type hole-forming device for the pot seedling transplanting machine for rapeseed was developed. A test bench for the hole-forming device was set and its effectiveness was verified in the soil bin. It was found, from the test results, that, when the forward speed of the hole-forming device was between 0.25 m/s and 0.45 m/s, the average qualified rates of hole forming of the device were 95.2%, 94.0% and 93.3%, respectively; the average change rates of the hole size were 2.3%, 2.9% and 5.5%, respectively; and the average error between the theoretical value of effective depth and the experimental value was between 2.0% and 5.6%. The average angle between the hole-forming stage trajectory of the hole opener and the horizontal direction at different forward speeds was higher than 88.0°; the coefficient of variation was between 0.16% and 0.64%; the perpendicularity of the hole-forming operation was high; the change rates of soil porosity of the hole wall were between 8.2% and 9.3%; and the average soil heave degrees at the hole mouth after the completion of the hole-forming operation were 3.9%, 4.1% and 4.2%, respectively. The average soil stability rates of the hole wall were 91.9%, 91.2% and 91.0%, respectively. The different performances of the hole-forming device were confirmed to meet the requirements of rapeseed pot seedling transplanting. This study can provide a reference for the structural improvement and optimization of the hole-punching transplanter for rapeseed pot seedlings.

Suggested Citation

  • Wei Quan & Mingliang Wu & Zhenwei Dai & Haifeng Luo & Fanggang Shi, 2022. "Design and Testing of Reverse-Rotating Soil-Taking-Type Hole-Forming Device of Pot Seedling Transplanting Machine for Rapeseed," Agriculture, MDPI, vol. 12(3), pages 1-22, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:319-:d:755719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/319/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/319/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Orzech & Maria Wanic & Dariusz Załuski, 2021. "The Effects of Soil Compaction and Different Tillage Systems on the Bulk Density and Moisture Content of Soil and the Yields of Winter Oilseed Rape and Cereals," Agriculture, MDPI, vol. 11(7), pages 1-17, July.
    2. Wacław Jarecki, 2021. "The Reaction of Winter Oilseed Rape to Different Foliar Fertilization with Macro- and Micronutrients," Agriculture, MDPI, vol. 11(6), pages 1-15, June.
    3. Yu Chen & Yuming Cheng & Jun Chen & Zhiqi Zheng & Chenwei Hu & Jiayu Cao, 2021. "Design and Experiment of the Buckwheat Hill-Drop Planter Hole Forming Device," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    2. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    3. Sara Marinari & Emanuele Radicetti & Verdiana Petroselli & Mohamed Allam & Roberto Mancinelli, 2022. "Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato ( Solanum tuberosum L.) Crop," Agriculture, MDPI, vol. 12(3), pages 1-12, March.
    4. Ying Wang & Sen Yang & Jian Sun & Ziguang Liu & Xinmiao He & Jinyou Qiao, 2023. "Effects of Tillage and Sowing Methods on Soil Physical Properties and Corn Plant Characters," Agriculture, MDPI, vol. 13(3), pages 1-15, March.
    5. Wenjie Li & Zhenghe Song & Minli Yang & Xiao Yang & Zhenhao Luo & Weijie Guo, 2022. "Analysis of Spatial Variability of Plough Layer Compaction by High-Power and No-Tillage Multifunction Units in Northeast China," Agriculture, MDPI, vol. 12(10), pages 1-21, September.
    6. Dorota Gawęda & Małgorzata Haliniarz, 2022. "The Yield and Weed Infestation of Winter Oilseed Rape ( Brassica napus L. ssp. oleifera Metzg) in Two Tillage Systems," Agriculture, MDPI, vol. 12(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:319-:d:755719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.