IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2155-d1003734.html
   My bibliography  Save this article

Soil Aggregate Breakdown with Colloidal Particles Release and Transport in Soil: A Perspective from Column Experiments

Author

Listed:
  • Gang Cao

    (College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China)

  • Bokun Chang

    (College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China)

  • Zhiying Zhou

    (College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China)

  • Liang Hu

    (College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China)

  • Wei Du

    (College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
    Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China)

  • Jialong Lv

    (College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
    Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling 712100, China)

Abstract

The strongest fortresses often disintegrate from the inside. Likewise, soil internal forces play a critical role in the initial breakdown process of soil aggregate, thus accelerating soil erosion and the release of soil colloid particles. To date, research on the effect of soil internal forces, especially separating the electrostatic force, and on the process of soil aggregate breakdown with particle release and transport in soil is largely inadequate. Therefore, column experiments were used to investigate the properties of transport and soil particles released from the disintegration of model soil aggregates caused by different levels of electrostatic forces. We found that the increase of electrostatic repulsive pressure was the immediate cause of soil aggregate breakdown, that the highest concentration of released soil particles could reach 808.36 mg L −1 , and that the mean particle sizes of the released soil ranged from 100 nm to 300 nm. The particle size distributions and clay mineral composition of the released soil particles were not dominated by the electrostatic force. In practice, the change of external conditions of agricultural soil would lead to the change of soil internal forces, then affect soil aggregate stability. This study aims to provide a micro perspective to understand the release of fine particles from soil matrix and its implication for agricultural soil.

Suggested Citation

  • Gang Cao & Bokun Chang & Zhiying Zhou & Liang Hu & Wei Du & Jialong Lv, 2022. "Soil Aggregate Breakdown with Colloidal Particles Release and Transport in Soil: A Perspective from Column Experiments," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2155-:d:1003734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ingrid M. Lubbers & Kees Jan van Groenigen & Steven J. Fonte & Johan Six & Lijbert Brussaard & Jan Willem van Groenigen, 2013. "Greenhouse-gas emissions from soils increased by earthworms," Nature Climate Change, Nature, vol. 3(3), pages 187-194, March.
    2. Davis, Natalie & Polhill, J. Gareth & Aitkenhead, M.J., 2021. "Measuring heterogeneity in soil networks: a network analysis and simulation-based approach," Ecological Modelling, Elsevier, vol. 439(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Penélope Mostazo & Carlos Asensio-Amador & Carlos Asensio, 2023. "Soil Erosion Modeling and Monitoring," Agriculture, MDPI, vol. 13(2), pages 1-4, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yafei Guo & Xiaoping Zhang & Yan Zhang & Donghui Wu & Neil McLaughlin & Shixiu Zhang & Xuewen Chen & Shuxia Jia & Aizhen Liang, 2019. "Temporal Variation of Earthworm Impacts on Soil Organic Carbon under Different Tillage Systems," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    2. Lena Wöhl & Thorsten Ruf & Christoph Emmerling & Jan Thiele & Stefan Schrader, 2023. "Assessment of Earthworm Services on Litter Mineralisation and Nutrient Release in Annual and Perennial Energy Crops ( Zea mays vs. Silphium perfoliatum )," Agriculture, MDPI, vol. 13(2), pages 1-20, February.
    3. Toru Hamamoto & Yoshitaka Uchida, 2019. "The Role of Different Earthworm Species ( Metaphire Hilgendorfi and Eisenia Fetida ) on CO 2 Emissions and Microbial Biomass during Barley Decomposition," Sustainability, MDPI, vol. 11(23), pages 1-10, November.
    4. Plaas, Elke & Meyer-Wolfarth, Friederike & Banse, Martin & Bengtsson, Jan & Bergmann, Holger & Faber, Jack & Potthoff, Martin & Runge, Tania & Schrader, Stefan & Taylor, Astrid, 2019. "Towards valuation of biodiversity in agricultural soils: A case for earthworms," Ecological Economics, Elsevier, vol. 159(C), pages 291-300.
    5. Elizabeth M. Bach & Kelly S. Ramirez & Tandra D. Fraser & Diana H. Wall, 2020. "Soil Biodiversity Integrates Solutions for a Sustainable Future," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    6. Syed Turab Raza & Jia Liang Tang & Zulfiqar Ali & Zhiyuan Yao & Hamidou Bah & Hassan Iqbal & Xiao Ren, 2020. "Ammonia Volatilization and Greenhouse Gases Emissions during Vermicomposting with Animal Manures and Biochar to Enhance Sustainability," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    7. Amrita Kumari Panda & Rojita Mishra & Joystu Dutta & Zishan Ahmad Wani & Shreekar Pant & Sazada Siddiqui & Saad Abdulrahman Alamri & Sulaiman A. Alrumman & Mohammed Ali Alkahtani & Satpal Singh Bisht, 2022. "Impact of Vermicomposting on Greenhouse Gas Emission: A Short Review," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    8. Alessia Spada & Mariantonietta Fiore & Umberto Monarca & Nicola Faccilongo, 2019. "R&D Expenditure for New Technology in Livestock Farming: Impact on GHG Reduction in Developing Countries," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
    9. Madalina Iordache, 2023. "Chemical composition of earthworm casts as a tool in understanding the earthworm contribution to ecosystem sustainability - a review," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(6), pages 247-268.
    10. Gerrit Angst & Anton Potapov & François-Xavier Joly & Šárka Angst & Jan Frouz & Pierre Ganault & Nico Eisenhauer, 2024. "Conceptualizing soil fauna effects on labile and stabilized soil organic matter," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2155-:d:1003734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.