IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2082-d993358.html
   My bibliography  Save this article

Effects of Oak Leaf Extract, Biofertilizer, and Soil Containing Oak Leaf Powder on Tomato Growth and Biochemical Characteristics under Water Stress Conditions

Author

Listed:
  • Nawroz Abdul-razzak Tahir

    (Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani 46001, Iraq)

  • Kamaran Salh Rasul

    (Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani 46001, Iraq)

  • Djshwar Dhahir Lateef

    (Crop Science and Biotechnology Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaimani 46001, Iraq)

  • Florian M. W. Grundler

    (INRES—Molecular Phytomedicine, University of Bonn, Karlrobert-Kreiten-Str. 13, D-53115 Bonn, Germany)

Abstract

Drought stress is one of the most significant abiotic stresses on the sustainability of global agriculture. The finding of natural resources is essential for decreasing the need for artificial fertilizers and boosting plant growth and yield under water stress conditions. This study used a factorial experimental design to investigate the effects of oak leaf extract, biofertilizer, and soil containing oak leaf powder on the growth and biochemical parameters of four tomato genotypes under water stress throughout the pre-flowering and pre-fruiting stages of plant development. The experiment had two components. The first component represented the genotypes (two sensitive and two tolerant), while the second component represented the treatment group, which included irrigated plants (SW), untreated and stressed plants (SS), treated plants with oak leaf powder and stressed (SOS), treated plants with oak leaf powder and oak leaf extract and stressed (SOES), and treated plants with oak leaf powder and biofertilizers and stressed (SOBS). When compared with irrigated or control plants, drought stress under the treatments of SS, SOS, SOES, and SOBS conditions at two stages and their combination significantly lowered shoot length (12.95%), total fruit weight per plant (33.97%), relative water content (14.05%), and total chlorophyll content (26.30%). The reduction values for shoot length (17.58%), shoot fresh weight (22.08%), and total fruit weight per plant (42.61%) were significantly larger in two sensitive genotypes compared with tolerant genotypes, which recorded decreasing percentages of 8.36, 8.88, and 25.32% for shoot length, shoot fresh weight, and total fruit weight per plant, respectively. Root fresh weight and root dry weight of genotypes treated with SS, SOS, SOES, and SOBS, on the other hand, increased in comparison with control plants. Tomato fruits from stressed plants treated with SS, SOS, SOES, and SOBS had considerably higher levels of titratable acidity, ascorbic acid, and total phenolic compounds than irrigated plants during all stress stages. Under water stress conditions, the addition of oak leaf powder to soil, oak leaf extract, and biofertilizer improved the biochemical content of leaves in all genotypes. Furthermore, leaf lipid peroxidation was lower in plants treated with SOES and SOBS, and lower in the two tolerant genotypes than in the two susceptible genotypes. In conclusion, the application of SOS, SOES, and SOBS demonstrated a slight decrease in some morpho-physiological and fruit physicochemical traits compared with SS treatment. However, the application of oak leaf powder and oak leaf extract can be described as novel agricultural practices because they are low-cost, easy to use, time-consuming, and can meet the growing demands of the agricultural sector by providing environmentally sustainable techniques for enhancing plant resistance to abiotic stress. The usage of the combination of leaf crude extract, oak leaf powder, and arbuscular mycorrhizal fungus should be investigated further under stress conditions.

Suggested Citation

  • Nawroz Abdul-razzak Tahir & Kamaran Salh Rasul & Djshwar Dhahir Lateef & Florian M. W. Grundler, 2022. "Effects of Oak Leaf Extract, Biofertilizer, and Soil Containing Oak Leaf Powder on Tomato Growth and Biochemical Characteristics under Water Stress Conditions," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2082-:d:993358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nawroz Abdul-razzak Tahir & Djshwar Dhahir Lateef & Kamil Mahmud Mustafa & Kamaran Salh Rasul, 2022. "Under Natural Field Conditions, Exogenous Application of Moringa Organ Water Extract Enhanced the Growth- and Yield-Related Traits of Barley Accessions," Agriculture, MDPI, vol. 12(9), pages 1-23, September.
    2. Chakma, Remi & Saekong, Pantamit & Biswas, Arindam & Ullah, Hayat & Datta, Avishek, 2021. "Growth, fruit yield, quality, and water productivity of grape tomato as affected by seed priming and soil application of silicon under drought stress," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Nadeem Akhtar Abbasi & Irfan Ali & Ishfaq Ahmad Hafiz & Mekhled M Alenazi & Muhammad Shafiq, 2019. "Effects of Putrescine Application on Peach Fruit during Storage," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyi Liu & Xiande Li & Junmao Sun, 2023. "China-Australia Trade Relations and China’s Barley Imports," Agriculture, MDPI, vol. 13(8), pages 1-13, July.
    2. repec:caa:jnlpse:v:preprint:id:423-2023-pse is not listed on IDEAS
    3. Hossam S. El-Beltagi & Khairiah Mubarak Alwutayd & Umair Rasheed & Abdul Sattar & Qasim Ali & Basmah M. Alharbi & Ghadah Hamad Al-Hawas & Zahid Khorshid Abbas & Doaa Bahaa Eldin Darwish & Samy F. Mahm, 2024. "Sole and combined foliar application of silicon and putrescine alleviates the negative effects of drought stress in maize by modulating the morpho-physiological and antioxidant defence mechanisms," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(1), pages 26-39.
    4. Nita Yuniati & Kusumiyati Kusumiyati & Syariful Mubarok & Bambang Nurhadi, 2023. "Assessment of Biostimulant Derived from Moringa Leaf Extract on Growth, Physiology, Yield, and Quality of Green Chili Pepper," Sustainability, MDPI, vol. 15(9), pages 1-13, April.
    5. Daniele Del Buono & Luca Regni & Primo Proietti, 2023. "Abiotic Stresses, Biostimulants and Plant Activity," Agriculture, MDPI, vol. 13(1), pages 1-5, January.
    6. Dou, Zhiyao & Feng, Hanlong & Zhang, Hao & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun & Fan, Junliang, 2023. "Silicon application mitigated the adverse effects of salt stress and deficit irrigation on drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2082-:d:993358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.