IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003206.html
   My bibliography  Save this article

Growth, fruit yield, quality, and water productivity of grape tomato as affected by seed priming and soil application of silicon under drought stress

Author

Listed:
  • Chakma, Remi
  • Saekong, Pantamit
  • Biswas, Arindam
  • Ullah, Hayat
  • Datta, Avishek

Abstract

Drought has been identified as a major threat restricting crop production worldwide. Silicon (Si), a beneficial element, has a proven role in enhancing plant tolerance against various biological and environmental stresses, especially drought. Two polyhouse experiments were conducted to evaluate the effect of seed priming and soil application of Si on growth, fruit yield, quality, and water productivity of grape tomato (Solanum Lycopersicon L. var. cerasiform) under drought stress. In the first experiment, Si in the form of monosilicic acid (MSA [H4SiO4]) was applied as a seed priming material in five doses (0, 0.063, 0.125, 0.25, and 0.5 mM) under three soil moisture regimes (50%, 75%, and 100% field capacity [FC]). The second experiment consisted of five MSA doses applied as soil incorporation (0, 75, 150, 300, and 600 kg ha–1) under the same soil moisture regimes used in the first experiment. The results revealed that fruit yield and irrigation water productivity were severely affected by soil moisture deficit at 50% FC, while fruit quality was better at this soil moisture level. Fruit yield was reduced by 95% at 0 mM MSA priming dose at 50% FC compared with fruit yield at 0.25 mM MSA priming dose at 100% FC in the first experiment. In the second experiment, soil incorporation of MSA at 300 kg ha–1 in combination with 100% FC maximized fruit yield, which was reduced by 96% at 0 kg ha–1 MSA dose in combination with 50% FC. Exogenous application of MSA at 0.25 mM as a seed priming material and 300 kg ha–1 as soil incorporation (60 kg ha–1 soluble Si) also resulted in better fruit yield and irrigation water productivity at 75% FC. Priming seeds of grape tomato with MSA at 0.25 mM or soil incorporating with 300 kg ha–1 could be recommended to enhance fruit yield of grape tomato grown under soil moisture regime fluctuating between sufficient (100% FC) and moderate soil moisture availability (75% FC).

Suggested Citation

  • Chakma, Remi & Saekong, Pantamit & Biswas, Arindam & Ullah, Hayat & Datta, Avishek, 2021. "Growth, fruit yield, quality, and water productivity of grape tomato as affected by seed priming and soil application of silicon under drought stress," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003206
    DOI: 10.1016/j.agwat.2021.107055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Estaji, Ahmad & Niknam, Fatemeh, 2020. "Foliar salicylic acid spraying effect’ on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Maneepitak, Sumana & Ullah, Hayat & Paothong, Kritkamol & Kachenchart, Boonlue & Datta, Avishek & Shrestha, Rajendra P., 2019. "Effect of water and rice straw management practices on yield and water productivity of irrigated lowland rice in the Central Plain of Thailand," Agricultural Water Management, Elsevier, vol. 211(C), pages 89-97.
    3. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Qiu, Rangjian & Guo, Ping & Chen, Renqiang, 2013. "Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages," Agricultural Water Management, Elsevier, vol. 129(C), pages 152-162.
    4. Campos, Cleide Nascimento & Ávila, Roniel Geraldo & de Souza, Kamila Rezende Dázio & Azevedo, Lillian Magalhães & Alves, Jose Donizeti, 2019. "Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants," Agricultural Water Management, Elsevier, vol. 211(C), pages 37-47.
    5. Khaled A. A. Abdelaal & Kotb A. Attia & Salman F. Alamery & Mohamed M. El-Afry & Abdelhalim I. Ghazy & Dalia S. Tantawy & Abdullah A. Al-Doss & El-Sayed E. El-Shawy & Abdelghafar M. Abu-Elsaoud & Yase, 2020. "Exogenous Application of Proline and Salicylic Acid can Mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters," Sustainability, MDPI, vol. 12(5), pages 1-15, February.
    6. Puangbut, Darunee & Jogloy, Sanun & Vorasoot, Nimitr, 2017. "Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions," Agricultural Water Management, Elsevier, vol. 188(C), pages 29-35.
    7. Cantore, V. & Lechkar, O. & Karabulut, E. & Sellami, M.H. & Albrizio, R. & Boari, F. & Stellacci, A.M. & Todorovic, M., 2016. "Combined effect of deficit irrigation and strobilurin application on yield, fruit quality and water use efficiency of “cherry” tomato (Solanum lycopersicum L.)," Agricultural Water Management, Elsevier, vol. 167(C), pages 53-61.
    8. Nangare, D.D. & Singh, Yogeshwar & Kumar, P. Suresh & Minhas, P.S., 2016. "Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis," Agricultural Water Management, Elsevier, vol. 171(C), pages 73-79.
    9. Chen, Jinliang & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Qiu, Rangjian & Chen, Renqiang & Gu, Feng, 2014. "Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition," Agricultural Water Management, Elsevier, vol. 146(C), pages 131-148.
    10. Songsri, P. & Jogloy, S. & Holbrook, C.C. & Kesmala, T. & Vorasoot, N. & Akkasaeng, C. & Patanothai, A., 2009. "Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water," Agricultural Water Management, Elsevier, vol. 96(5), pages 790-798, May.
    11. Kirda, C. & Cetin, M. & Dasgan, Y. & Topcu, S. & Kaman, H. & Ekici, B. & Derici, M. R. & Ozguven, A. I., 2004. "Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation," Agricultural Water Management, Elsevier, vol. 69(3), pages 191-201, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dou, Zhiyao & Feng, Hanlong & Zhang, Hao & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun & Fan, Junliang, 2023. "Silicon application mitigated the adverse effects of salt stress and deficit irrigation on drip-irrigated greenhouse tomato," Agricultural Water Management, Elsevier, vol. 289(C).
    2. Hossam S. El-Beltagi & Khairiah Mubarak Alwutayd & Umair Rasheed & Abdul Sattar & Qasim Ali & Basmah M. Alharbi & Ghadah Hamad Al-Hawas & Zahid Khorshid Abbas & Doaa Bahaa Eldin Darwish & Samy F. Mahm, 2024. "Sole and combined foliar application of silicon and putrescine alleviates the negative effects of drought stress in maize by modulating the morpho-physiological and antioxidant defence mechanisms," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(1), pages 26-39.
    3. repec:caa:jnlpse:v:preprint:id:423-2023-pse is not listed on IDEAS
    4. Nawroz Abdul-razzak Tahir & Kamaran Salh Rasul & Djshwar Dhahir Lateef & Florian M. W. Grundler, 2022. "Effects of Oak Leaf Extract, Biofertilizer, and Soil Containing Oak Leaf Powder on Tomato Growth and Biochemical Characteristics under Water Stress Conditions," Agriculture, MDPI, vol. 12(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    3. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    4. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Li, Huanhuan & Liu, Hao & Gong, Xuewen & Li, Shuang & Pang, Jie & Chen, Zhifang & Sun, Jingsheng, 2021. "Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Liu, Hao & Li, Huanhuan & Ning, Huifeng & Zhang, Xiaoxian & Li, Shuang & Pang, Jie & Wang, Guangshuai & Sun, Jingsheng, 2019. "Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 226(C).
    7. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    9. Qu, Zhaoming & Qi, Xingchao & Liu, Yanli & Liu, Kexin & Li, Chengliang, 2020. "Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse," Agricultural Water Management, Elsevier, vol. 235(C).
    10. Rosa Francaviglia & Claudia Di Bene, 2019. "Deficit Drip Irrigation in Processing Tomato Production in the Mediterranean Basin. A Data Analysis for Italy," Agriculture, MDPI, vol. 9(4), pages 1-14, April.
    11. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    12. Wu, Zhuqing & Fan, Yaqiong & Qiu, Yuan & Hao, Xinmei & Li, Sien & Kang, Shaozhong, 2022. "Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    13. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    14. Guida, Gianpiero & Sellami, Mohamed Houssemeddine & Mistretta, Carmela & Oliva, Marco & Buonomo, Roberta & De Mascellis, Roberto & Patanè, Cristina & Rouphael, Youssef & Albrizio, Rossella & Giorio, P, 2017. "Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions," Agricultural Water Management, Elsevier, vol. 180(PA), pages 126-135.
    15. Guo, Lijie & Cao, Hongxia & Helgason, Warren D. & Yang, Hui & Wu, Xuanyi & Li, Hongzheng, 2022. "Effect of drip-line layout and irrigation amount on yield, irrigation water use efficiency, and quality of short-season tomato in Northwest China," Agricultural Water Management, Elsevier, vol. 270(C).
    16. Yao, Zhenzhu & Hou, Xuemin & Wang, Yu & Du, Taisheng, 2023. "Regulation of tomato yield and fruit quality by alternate partial root-zone irrigation strongly depends on truss positions," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Sun, Qing & Wang, Yaosheng & Chen, Geng & Yang, Hui & Du, Taisheng, 2018. "Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane," Agricultural Water Management, Elsevier, vol. 203(C), pages 430-437.
    18. Gong, Xuewen & Li, Xiaoming & Qiu, Rangjian & Bo, Guokui & Ping, Yinglu & Xin, Qingsong & Ge, Jiankun, 2022. "Ventilation and irrigation management strategy for tomato cultivated in greenhouses," Agricultural Water Management, Elsevier, vol. 273(C).
    19. Sun, Lei & Li, Bo & Yao, Mingze & Niu, Dongshuang & Gao, Manman & Mao, Lizhen & Xu, Zhanyang & Wang, Tieliang & Wang, Jingkuan, 2023. "Optimising water and nitrogen management for greenhouse tomatoes in Northeast China using EWM−TOPSIS−AISM model," Agricultural Water Management, Elsevier, vol. 290(C).
    20. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.