IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2066-d990762.html
   My bibliography  Save this article

Red Light Emitting Transition Metal Ion Doped Calcium Antimony Oxide for Plant Growth Lighting Applications

Author

Listed:
  • Lankamsetty Krishna Bharat

    (Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, 1st Institutsky Proezd 5, 109428 Moscow, Russia
    Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si 17104, Republic of Korea)

  • Harishkumarreddy Patnam

    (Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si 17104, Republic of Korea)

  • Alexander Sokolov

    (Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, 1st Institutsky Proezd 5, 109428 Moscow, Russia)

  • Sergey V. Gudkov

    (Federal State Budgetary Scientific Institution “Federal Scientific Agroengineering Center VIM”, 1st Institutsky Proezd 5, 109428 Moscow, Russia
    Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilova Str. 38, 119991 Moscow, Russia)

  • Jae Su Yu

    (Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin-si 17104, Republic of Korea)

Abstract

In this work, we synthesized Mn 4+ -doped CaSb 2 O 6 phosphors using the conventional solid-state reaction method for plant growth lighting applications. The morphological, structural, and optical properties were analyzed based on the results obtained from scanning electron microscope, X-ray diffraction, and spectrophotometer. The results of the spectrophotometer illustrate that the phosphors showed a red emission band in 550–800 nm wavelength range with peak maxima at 642 nm. The red emission in these phosphors is attributed to the 2 E g → 4 A 2g transition of Mn 4+ ions. The emission intensity is increased with the doping of a charge compensator. The emission range of the phosphor covers the absorption range of photosynthetic pigments such as chlorophyll a, chlorophyll b, phytochrome P r , and phytochrome P fr . The results signify that the prepared phosphor materials are suitable candidates for application in plant growth lighting.

Suggested Citation

  • Lankamsetty Krishna Bharat & Harishkumarreddy Patnam & Alexander Sokolov & Sergey V. Gudkov & Jae Su Yu, 2022. "Red Light Emitting Transition Metal Ion Doped Calcium Antimony Oxide for Plant Growth Lighting Applications," Agriculture, MDPI, vol. 12(12), pages 1-10, December.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2066-:d:990762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2066/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2066/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Devesh & Basu, Chandrajit & Meinhardt-Wollweber, Merve & Roth, Bernhard, 2015. "LEDs for energy efficient greenhouse lighting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 139-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vadim Bolshev & Vladimir Panchenko & Alexey Sibirev, 2023. "Engineering Innovations in Agriculture," Agriculture, MDPI, vol. 13(7), pages 1-4, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajagekar, Akshay & Decardi-Nelson, Benjamin & You, Fengqi, 2024. "Energy management for demand response in networked greenhouses with multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 355(C).
    2. Dennis Dannehl & Thomas Schwend & Daniel Veit & Uwe Schmidt, 2021. "LED versus HPS Lighting: Effects on Water and Energy Consumption and Yield Quality in Lettuce Greenhouse Production," Sustainability, MDPI, vol. 13(15), pages 1-11, August.
    3. Rojas-Hernandez, Rocío Estefanía & Rubio-Marcos, Fernando & Rodriguez, Miguel Ángel & Fernandez, José Francisco, 2018. "Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2759-2770.
    4. Chiara Burattini & Benedetta Mattoni & Fabio Bisegna, 2017. "The Impact of Spectral Composition of White LEDs on Spinach ( Spinacia oleracea ) Growth and Development," Energies, MDPI, vol. 10(9), pages 1-14, September.
    5. Danilo Loconsole & Giacomo Cocetta & Piero Santoro & Antonio Ferrante, 2019. "Optimization of LED Lighting and Quality Evaluation of Romaine Lettuce Grown in An Innovative Indoor Cultivation System," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    6. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    7. Teodor Rusu & Reed John Cowden & Paula Ioana Moraru & Mihai Avram Maxim & Bhim Bahadur Ghaley, 2021. "Overview of Multiple Applications of Basil Species and Cultivars and the Effects of Production Environmental Parameters on Yields and Secondary Metabolites in Hydroponic Systems," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    8. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    9. Nima Asgari & Matthew T. McDonald & Joshua M. Pearce, 2023. "Energy Modeling and Techno-Economic Feasibility Analysis of Greenhouses for Tomato Cultivation Utilizing the Waste Heat of Cryptocurrency Miners," Energies, MDPI, vol. 16(3), pages 1-42, January.
    10. Amaresh Sarkar & Mrinmoy Majumder, 2019. "Economic of a six-story stacked protected farm structure," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1075-1089, June.
    11. Latifa Bachouch & Neermalsing Sewraj & Pascal Dupuis & Laurent Canale & Georges Zissis & Lotfi Bouslimi & Lilia El Amraoui, 2021. "An Approach for Designing Mixed Light-Emitting Diodes to Match Greenhouse Plant Absorption Spectra," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    12. Sungwoo Lee & Sungho Tae & Hyungjae Jang & Chang U. Chae & Youngjin Bok, 2021. "Development of Building Information Modeling Template for Environmental Impact Assessment," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    13. Wang, Tianyue & Wu, Gaoxiang & Chen, Jiewei & Cui, Peng & Chen, Zexi & Yan, Yangyang & Zhang, Yan & Li, Meicheng & Niu, Dongxiao & Li, Baoguo & Chen, Hongyi, 2017. "Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1178-1188.
    14. Ivan Paucek & Elisa Appolloni & Giuseppina Pennisi & Stefania Quaini & Giorgio Gianquinto & Francesco Orsini, 2020. "LED Lighting Systems for Horticulture: Business Growth and Global Distribution," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    15. Sungwoo Lee & Sungho Tae, 2020. "Development of a Decision Support Model Based on Machine Learning for Applying Greenhouse Gas Reduction Technology," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
    16. Sungkyun Ha & Sungho Tae & Rakhyun Kim, 2019. "A Study on the Limitations of South Korea’s National Roadmap for Greenhouse Gas Reduction by 2030 and Suggestions for Improvement," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    17. Gianluca Serale & Luca Gnoli & Emanuele Giraudo & Enrico Fabrizio, 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses," Energies, MDPI, vol. 14(1), pages 1-19, January.
    18. Jacqualine A Thomas & Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2020. "Increasing the Yield of Lactuca sativa , L. in Glass Greenhouses through Illumination Spectral Filtering and Development of an Optical Thin Film Filter," Sustainability, MDPI, vol. 12(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2066-:d:990762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.