IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2054-d988718.html
   My bibliography  Save this article

Optimization of a High-Pressure Soil Washing System for Emergency Recovery of Heavy Metal-Contaminated Soil

Author

Listed:
  • Sang Hyeop Park

    (Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea)

  • Agamemnon Koutsospyros

    (Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

  • Deok Hyun Moon

    (Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea)

Abstract

Recent natural disasters, such as typhoons in South Korea and other countries around the globe, have resulted in loss of human life and damage to property, often causing contamination of nearby soil environments. This study focused on the emergency recovery of soil contaminated by heavy metals following a disaster such as typhoon flooding by applying a soil washing technique that used high-pressure water rather than chemical cleaning agents. Artificially contaminated soil containing 700 mg/kg Cu, 530 mg/kg Pb and 900 mg/kg Zn, was used. All three metals were present at levels higher than the Korean Warning Standards (500 mg/kg Cu, 400 mg/kg Pb, 600 mg/kg Zn) for region 2 (miscellaneous area). A high-pressure soil washing device was designed to treat 0.6 tons/h and optimal treatment was sought for varying levels of pressure (1, 3, 5 MPa), solid to liquid ratios (S/L) (1:1, 1:3, 1:5), and number of washing cycles (1, 2, 3). The high-pressure soil washing results showed that a 5 MPa washing pressure, 1:1 solid-liquid ratio, and one washing cycle were the optimum conditions to generate the highest heavy metal removal rates. Under optimal conditions, high-pressure soil washing attained removal efficiencies of Cu (37.7%), Pb (36.6%), and Zn (45.1%), and the residual concentrations of heavy metals in the remediated soil satisfied the Korean Warning Standard (Region 2). A comparison of the changes in particle size showed that after high-pressure washing, the mass fraction of coarse sand (CS, 2–0.42 mm) decreased by 23.3%, while that of fine sand (FS, 0.42–0.074 mm), silt, and clay (SC, <0.074 mm) increased by 4.2% and 19.1%, respectively. In addition, 31.1–34.6% of the CS heavy metal mass loading shifted to FS and SC fractions after washing. A comparative analysis of the soil surface morphology before and after washing using scanning electron microscopy (SEM) showed that the particles in the remediated soil became noticeably cleaner after high-pressure washing. This study demonstrated the feasibility of emergency recovery of heavy metal-contaminated soil using high-pressure washing without a chemical cleaning agent.

Suggested Citation

  • Sang Hyeop Park & Agamemnon Koutsospyros & Deok Hyun Moon, 2022. "Optimization of a High-Pressure Soil Washing System for Emergency Recovery of Heavy Metal-Contaminated Soil," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2054-:d:988718
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyunsoo Kim & Kanghee Cho & Oyunbileg Purev & Nagchoul Choi & Jaewon Lee, 2022. "Remediation of Toxic Heavy Metal Contaminated Soil by Combining a Washing Ejector Based on Hydrodynamic Cavitation and Soil Washing Process," IJERPH, MDPI, vol. 19(2), pages 1-14, January.
    2. Deok Hyun Moon & Agamemnon Koutsospyros, 2022. "Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials," Agriculture, MDPI, vol. 12(3), pages 1-12, March.
    3. Deok Hyun Moon & Sokhee P. Jung & Agamemnon Koutsospyros, 2022. "Assessment of the Stabilization of Mercury Contaminated Soil Using Starfish," Agriculture, MDPI, vol. 12(4), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deok Hyun Moon & Jinsung An & Sang Hyeop Park & Agamemnon Koutsospyros, 2023. "Remediation of Heavy Metal (Cu, Pb) Contaminated Fine Soil Using Stabilization with Limestone and Livestock Bone Powder," Sustainability, MDPI, vol. 15(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang Hyeop Park & Jinsung An & Agamemnon Koutsospyros & Deok Hyun Moon, 2023. "Assessment of the Stabilization of Cu-, Pb-, and Zn-Contaminated Fine Soil Using Cockle Shells, Scallop Shells, and Starfish," Agriculture, MDPI, vol. 13(7), pages 1-15, July.
    2. Qiao Yang & Hao Yu & Zhongqiu Zhao & Zhengshan Ju, 2024. "Effects of Enhanced Phytoremediation Techniques on Soil Aggregate Structure," Agriculture, MDPI, vol. 14(11), pages 1-22, October.
    3. Hyunsoo Kim & Oyunbileg Purev & Kanghee Cho & Nagchoul Choi & Jaewon Lee & Seongjin Yoon, 2022. "Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector and Its Application for CO 2 Capture," IJERPH, MDPI, vol. 19(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2054-:d:988718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.