IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i3p367-d764357.html
   My bibliography  Save this article

Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials

Author

Listed:
  • Deok Hyun Moon

    (Department of Environmental Engineering, Chosun University, Gwangju 61452, Korea)

  • Agamemnon Koutsospyros

    (Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

Abstract

Stabilization was applied as a remediation option for immobilizing lead (Pb) in contaminated mine soil. Four types of waste materials were used as stabilizing agents, namely waste oyster shells (WOS), calcined oyster shells (COS), natural starfish (NSF), and spent-coffee-grounds-derived biochar (SCGB). The Pb-contaminated mine soil was treated with the stabilizing agents ranging from 0 to 10 wt% and a curing period of 28 days. The toxicity characteristic leaching procedure (TCLP) was employed for evaluating the effectiveness of the remedial process. The Pb immobilization mechanism in the treated mine soil was investigated using scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM-EDX) analyses. The obtained results showed that the TCLP Pb levels decreased as the stabilizing agent dosage increased. The WOS and COS stabilizing agents immobilized Pb effectively in the contaminated mine soil. Application dosages of 4 wt% and 2 wt% for WOS and COS, respectively, were sufficient for compliance with the TCLP regulatory level of 5 mg/L. For the NSF and SCGB treatments, 4 wt% and 10 wt%, respectively, were necessary to meet the TCLP regulatory limit. The effectiveness of Pb immobilization was found to increase in the following order: SCGB < NSF < WOS < COS. The chemical fraction analyses showed that the lower F2 (weak acid soluble) fraction and higher F3 (reducible) and F4 (oxidizable) fractions were most likely associated with the high level of Pb immobilization. Moreover, the SEM-EDX analysis results showed that the most effective Pb immobilization could be strongly associated with the pozzolanic reaction products.

Suggested Citation

  • Deok Hyun Moon & Agamemnon Koutsospyros, 2022. "Stabilization of Lead-Contaminated Mine Soil Using Natural Waste Materials," Agriculture, MDPI, vol. 12(3), pages 1-12, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:367-:d:764357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/3/367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/3/367/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sang Hyeop Park & Agamemnon Koutsospyros & Deok Hyun Moon, 2022. "Optimization of a High-Pressure Soil Washing System for Emergency Recovery of Heavy Metal-Contaminated Soil," Agriculture, MDPI, vol. 12(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:3:p:367-:d:764357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.