IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1882-d1505517.html
   My bibliography  Save this article

Effects of Enhanced Phytoremediation Techniques on Soil Aggregate Structure

Author

Listed:
  • Qiao Yang

    (Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
    School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
    Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing 100035, China)

  • Hao Yu

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Zhongqiu Zhao

    (School of Land Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China)

  • Zhengshan Ju

    (Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
    Technology Innovation Center of Land Engineering, Ministry of Natural Resources, Beijing 100035, China)

Abstract

In response to the current serious problem of soil cadmium (Cd) contamination in agricultural land, phytoremediation technology is a green and environmentally friendly application prospect; however, its remediation efficiency is currently limited. An enhanced phytoremediation technique was constructed using the biodegradable chelator aspartate diethoxysuccinic acid (AES) combined with the plant growth regulator gibberellic acid (GA 3 ) to enhance the formation of maize. This technique has been proven to have a superior remediation effect. However, the safety of the restoration technique is of particular importance. The remediation process not only removes the contaminants, but also ensures that the original structure and stability of the soil is not damaged. In this regard, the constructed enhanced phytoremediation technique was further investigated in this study using soil columns. In combination with microscopic tests, such as X-ray diffraction and scanning electron microscopy, this study investigated the effects of the remediation process on the distribution characteristics of Cd in soil aggregates, and the structure and stability of soil aggregates. This was conducted by analyzing, as follows: plant growth conditions; the morphology, structure and mineral composition of soil aggregates in different soil layers; and the changes in these characteristics. The results demonstrated that the enhanced phytoremediation technique constructed in this study has a negligible impact on the morphology and mineral composition of soil aggregates, while exerting a limited influence on soil structure stability. This indicates that the technique can facilitate the safe utilization of remediated contaminated soil.

Suggested Citation

  • Qiao Yang & Hao Yu & Zhongqiu Zhao & Zhengshan Ju, 2024. "Effects of Enhanced Phytoremediation Techniques on Soil Aggregate Structure," Agriculture, MDPI, vol. 14(11), pages 1-22, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1882-:d:1505517
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyunsoo Kim & Kanghee Cho & Oyunbileg Purev & Nagchoul Choi & Jaewon Lee, 2022. "Remediation of Toxic Heavy Metal Contaminated Soil by Combining a Washing Ejector Based on Hydrodynamic Cavitation and Soil Washing Process," IJERPH, MDPI, vol. 19(2), pages 1-14, January.
    2. Mingyong Zhu & Wenming He & Youcun Liu & Zhiyun Chen & Zhicheng Dong & Changbai Zhu & Yankui Chen & Yongzhu Xiong, 2022. "Characteristics of Soil Erodibility in the Yinna Mountainous Area, Eastern Guangdong Province, China," IJERPH, MDPI, vol. 19(23), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang Hyeop Park & Agamemnon Koutsospyros & Deok Hyun Moon, 2022. "Optimization of a High-Pressure Soil Washing System for Emergency Recovery of Heavy Metal-Contaminated Soil," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    2. Sang Hyeop Park & Jinsung An & Agamemnon Koutsospyros & Deok Hyun Moon, 2023. "Assessment of the Stabilization of Cu-, Pb-, and Zn-Contaminated Fine Soil Using Cockle Shells, Scallop Shells, and Starfish," Agriculture, MDPI, vol. 13(7), pages 1-15, July.
    3. Hyunsoo Kim & Oyunbileg Purev & Kanghee Cho & Nagchoul Choi & Jaewon Lee & Seongjin Yoon, 2022. "Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector and Its Application for CO 2 Capture," IJERPH, MDPI, vol. 19(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1882-:d:1505517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.