IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i4p305-d528526.html
   My bibliography  Save this article

Sunflower Husk Biochar as a Key Agrotechnical Factor Enhancing Sustainable Soybean Production

Author

Listed:
  • Agnieszka Klimek-Kopyra

    (Institute of Plant Production, Faculty of Agriculture and Economy, Al. Mickiewicza 21, 31-120 Krakow, Poland)

  • Urszula Sadowska

    (The Institute of Machinery Exploitation, Ergonomics and Production Processes, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland)

  • Maciej Kuboń

    (Department of Production Engineering, Logistics and Applied Computer Science, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland
    Eastern European State College of Higher Education in Przemysl, Książąt Lubomirskich 6, 37-700 Przemysl, Poland)

  • Maciej Gliniak

    (Department of Bioprocess Engineering, Power Engineering and Automation, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland)

  • Jakub Sikora

    (Department of Bioprocess Engineering, Power Engineering and Automation, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland)

Abstract

Climate change has a decisive impact on the physical parameters of soil. To counteract this phenomenon, the ongoing search for more effective agri-technical solutions aims at the improvement of the physical properties of soil over a short time. The study aimed to assess the effect of biochar produced from sunflower husks on soil respiration (SR), soil water flux (SWF), and soil temperature (ST), depending on its dose and different soil cover (with and without vegetation). Moreover, the seed yield was assessed depending on the biochar fertilization. Field experiments were conducted on Calcaric/Dolomitic Leptosols (Ochric soil). SR, ST, and SWT were evaluated seven times in three-week intervals during two seasons, over 2018 and 2019. It was found that the time of biochar application had a significant effect on the evaluated parameters. In the second year, the authors observed significantly ( p < 0.005) higher soil respiration (4.38 µmol s ?1 m ?2 ), soil temperature (21.2 °C), and the level of water net transfer in the soil (0.38 m mol s ?1 m ?2 ), compared to the first year. The most effective biochar dose regarding SR and soybean yield was 60 t ha ?1 . These are promising results, but a more comprehensive cost-benefit analysis is needed to recommend large-scale biochar use at this dose.

Suggested Citation

  • Agnieszka Klimek-Kopyra & Urszula Sadowska & Maciej Kuboń & Maciej Gliniak & Jakub Sikora, 2021. "Sunflower Husk Biochar as a Key Agrotechnical Factor Enhancing Sustainable Soybean Production," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:305-:d:528526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/4/305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/4/305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Niemiec & Maciej Chowaniak & Jakub Sikora & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Monika Komorowska, 2020. "Selected Properties of Soils for Long-Term Use in Organic Farming," Sustainability, MDPI, vol. 12(6), pages 1-10, March.
    2. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    3. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage," Energies, MDPI, vol. 13(8), pages 1-14, April.
    4. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    5. Peter Högberg & Anders Nordgren & Nina Buchmann & Andrew F. S. Taylor & Alf Ekblad & Mona N. Högberg & Gert Nyberg & Mikaell Ottosson-Löfvenius & David J. Read, 2001. "Large-scale forest girdling shows that current photosynthesis drives soil respiration," Nature, Nature, vol. 411(6839), pages 789-792, June.
    6. Johannes Lehmann, 2007. "A handful of carbon," Nature, Nature, vol. 447(7141), pages 143-144, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Wystalska & Anna Kwarciak-Kozłowska & Renata Włodarczyk, 2022. "Influence of Technical Parameters of the Pyrolysis Process on the Surface Area, Porosity, and Hydrophobicity of Biochar from Sunflower Husk Pellet," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    2. Claudia Di Bene & Rosa Francaviglia & Roberta Farina & Jorge Álvaro-Fuentes & Raúl Zornoza, 2022. "Agricultural Diversification," Agriculture, MDPI, vol. 12(3), pages 1-6, March.
    3. Juan José Martínez-Nicolás & Pilar Legua & Francisca Hernández & Rafael Martínez-Font & Edgardo Giordani & Pablo Melgarejo, 2021. "Effect of Phytoremediated Port Sediment as an Agricultural Medium for Pomegranate Cultivation: Mobility of Contaminants in the Plant," Sustainability, MDPI, vol. 13(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zofia Gródek-Szostak & Marcin Suder & Rafał Kusa & Anna Szeląg-Sikora & Joanna Duda & Marcin Niemiec, 2020. "Renewable Energy Promotion Instruments Used by Innovation Brokers in a Technology Transfer Network. Case Study of the Enterprise Europe Network," Energies, MDPI, vol. 13(21), pages 1-13, November.
    2. Zofia Gródek-Szostak & Małgorzata Luc & Anna Szeląg-Sikora & Jakub Sikora & Marcin Niemiec & Luis Ochoa Siguencia & Emil Velinov, 2020. "Promotion of RES in a Technology Transfer Network. Case Study of the Enterprise Europe Network," Energies, MDPI, vol. 13(13), pages 1-13, July.
    3. Zofia Gródek-Szostak & Marcin Suder & Rafał Kusa & Jakub Sikora & Marcin Niemiec, 2020. "Effectiveness of Instruments Supporting Inter-Organizational Cooperation in the RES Market in Europe. Case Study of Enterprise Europe Network," Energies, MDPI, vol. 13(23), pages 1-19, December.
    4. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage," Energies, MDPI, vol. 13(8), pages 1-14, April.
    5. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    6. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    7. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    8. Kung, Chih-Chun & McCarl, Bruce A. & Cao, Xiaoyong, 2013. "Economics of pyrolysis-based energy production and biochar utilization: A case study in Taiwan," Energy Policy, Elsevier, vol. 60(C), pages 317-323.
    9. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    10. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    11. Mathews, John A., 2008. "Carbon-negative biofuels," Energy Policy, Elsevier, vol. 36(3), pages 940-945, March.
    12. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    13. Sriphirom, Patikorn & Rossopa, Benjamas, 2023. "Assessment of greenhouse gas mitigation from rice cultivation using alternate wetting and drying and rice straw biochar in Thailand," Agricultural Water Management, Elsevier, vol. 290(C).
    14. Kanbur, Ravi & Leard, Benjamin & Bento, Antonio, 2012. "Super-Additionality: A Neglected Force in Markets for Carbon Offsets," CEPR Discussion Papers 8952, C.E.P.R. Discussion Papers.
    15. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    16. Quetzalcoatl Hernandez-Escobedo & Alida Ramirez-Jimenez & Jesús Manuel Dorador-Gonzalez & Miguel-Angel Perea-Moreno & Alberto-Jesus Perea-Moreno, 2020. "Sustainable Solar Energy in Mexican Universities. Case Study: The National School of Higher Studies Juriquilla (UNAM)," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    17. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    18. Chih-Chun Kung & Bruce A. McCarl & Chi-Chung Chen, 2014. "An Environmental and Economic Evaluation of Pyrolysis for Energy Generation in Taiwan with Endogenous Land Greenhouse Gases Emissions," IJERPH, MDPI, vol. 11(3), pages 1-19, March.
    19. Ahmad Numery Ashfaqul Haque & Md. Kamal Uddin & Muhammad Firdaus Sulaiman & Adibah Mohd Amin & Mahmud Hossain & Zakaria M. Solaiman & Mehnaz Mosharrof, 2021. "Biochar with Alternate Wetting and Drying Irrigation: A Potential Technique for Paddy Soil Management," Agriculture, MDPI, vol. 11(4), pages 1-35, April.
    20. Q. Hao & C. Jiang, 2014. "Contribution of root respiration to soil respiration in a rape (Brassica campestris L.) field in Southwest China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 60(1), pages 8-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:4:p:305-:d:528526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.