IDEAS home Printed from https://ideas.repec.org/a/fip/fedhep/00005.html
   My bibliography  Save this article

Nowcasting Using the Chicago Fed National Activity Index

Author

Listed:
  • Scott Brave
  • R. Andrew Butters

Abstract

The authors present an alternative version of the Chicago Fed National Activity Index (CFNAI), which is constructed using a methodology that allows for a more robust treatment of the underlying data series than its traditional methodology. This alternative CFNAI produces superior predictions of real gross domestic product growth for the current quarter (nowcasts) while correlating more closely with U.S. recessions than the traditional index.

Suggested Citation

  • Scott Brave & R. Andrew Butters, 2014. "Nowcasting Using the Chicago Fed National Activity Index," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 19-37.
  • Handle: RePEc:fip:fedhep:00005
    as

    Download full text from publisher

    File URL: http://www.chicagofed.org/digital_assets/publications/economic_perspectives/2014/1Q2014_part2_brave_butters.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bräuning, Falk & Koopman, Siem Jan, 2014. "Forecasting macroeconomic variables using collapsed dynamic factor analysis," International Journal of Forecasting, Elsevier, vol. 30(3), pages 572-584.
    2. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    3. Scott Brave, 2008. "Economic trends and the Chicago Fed National Activity Index," Chicago Fed Letter, Federal Reserve Bank of Chicago, issue May.
    4. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. Baker, Stuart G. & Kramer, Barnett S., 2007. "Peirce, Youden, and Receiver Operating Characteristic Curves," The American Statistician, American Statistical Association, vol. 61, pages 343-346, November.
    7. R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
    8. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
    9. Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
    10. Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
    11. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    12. Jonas D. M. Fisher, 2000. "Forecasting inflation with a lot of data," Chicago Fed Letter, Federal Reserve Bank of Chicago, issue Mar.
    13. Scott Brave & R. Andrew Butters, 2013. "Estimating the trend rate of economic growth using the CFNAI," Chicago Fed Letter, Federal Reserve Bank of Chicago, issue June.
    14. Charles L. Evans & Chin Te Liu & Genevieve Pham-Kanter, 2002. "The 2001 recession and the Chicago Fed National Index: identifying business cycle turning points," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 26(Q III), pages 26-43.
    15. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    16. Oscar Jorda & Travis Berge, 2009. "The Classification of Economic Activity into Expansions and Recessions," Working Papers 918, University of California, Davis, Department of Economics.
    17. Watson, Mark W. & Engle, Robert F., 1983. "Alternative algorithms for the estimation of dynamic factor, mimic and varying coefficient regression models," Journal of Econometrics, Elsevier, vol. 23(3), pages 385-400, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdalla, Ahmed & Carabias, Jose M. & Patatoukas, Panos N., 2021. "The real-time macro content of corporate financial reports: a dynamic factor model approach," LSE Research Online Documents on Economics 108539, London School of Economics and Political Science, LSE Library.
    2. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    3. Brave, Scott A. & Butters, R. Andrew & Justiniano, Alejandro, 2019. "Forecasting economic activity with mixed frequency BVARs," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1692-1707.
    4. Carabias, Jose M., 2018. "The real-time information content of macroeconomic news: implications for firm-level earnings expectations," LSE Research Online Documents on Economics 86399, London School of Economics and Political Science, LSE Library.
    5. Heinrich, Markus, 2020. "Does the Current State of the Business Cycle matter for Real-Time Forecasting? A Mixed-Frequency Threshold VAR approach," EconStor Preprints 219312, ZBW - Leibniz Information Centre for Economics.
    6. Abdalla, Ahmed M. & Carabias, Jose M. & Patatoukas, Panos N., 2021. "The real-time macro content of corporate financial reports: A dynamic factor model approach," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 260-280.
    7. Sean P. Grover & Kevin L. Kliesen & Michael W. McCracken, 2016. "A Macroeconomic News Index for Constructing Nowcasts of U.S. Real Gross Domestic Product Growth," Review, Federal Reserve Bank of St. Louis, vol. 98(4), pages 277-296.
    8. Jose M. Carabias, 2018. "The real-time information content of macroeconomic news: implications for firm-level earnings expectations," Review of Accounting Studies, Springer, vol. 23(1), pages 136-166, March.
    9. Jiménez Polanco, Miguel Alejandro & López Hawa, Nabil & Ramírez Escoboza, Merlym, 2016. "Indicadores Compuestos de Actividad Económica por sectores para la República Dominicana [Composite Indicators of Economic Activity for the Dominican Republic]," MPRA Paper 75916, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    2. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    3. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Monica Defend & Aleksey Min & Lorenzo Portelli & Franz Ramsauer & Francesco Sandrini & Rudi Zagst, 2021. "Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data," Forecasting, MDPI, vol. 3(1), pages 1-35, February.
    6. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    7. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    8. Kaufmann, Daniel & Scheufele, Rolf, 2017. "Business tendency surveys and macroeconomic fluctuations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
    9. Modugno, Michele & Soybilgen, Barış & Yazgan, Ege, 2016. "Nowcasting Turkish GDP and news decomposition," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1369-1384.
    10. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    11. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    12. Blasques, F. & Koopman, S.J. & Mallee, M. & Zhang, Z., 2016. "Weighted maximum likelihood for dynamic factor analysis and forecasting with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 405-417.
    13. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    14. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
    15. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    16. S. J. Koopman & G. Mesters, 2017. "Empirical Bayes Methods for Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 486-498, July.
    17. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
    18. Marcellino, Massimiliano & Sivec, Vasja, 2016. "Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
    19. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
    20. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedhep:00005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauren Wiese (email available below). General contact details of provider: https://edirc.repec.org/data/frbchus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.