IDEAS home Printed from https://ideas.repec.org/a/fip/fedfer/y1996p3-11n3.html
   My bibliography  Save this article

Using monthly data to predict quarterly output

Author

Listed:
  • Robert Ingenito
  • Bharat Trehan

Abstract

Some time ago, the Commerce Department changed the way it calculates real gross domestic product. In response to that change, this paper presents an update of a simple model that is used to predict the growth rate of current quarter real output based on available monthly data. After searching over a set containing more than 30 different variables, we find that a model that utilized monthly data on consumption and nonfarm payroll employment to predict contemporaneous real GDP does best.

Suggested Citation

  • Robert Ingenito & Bharat Trehan, 1996. "Using monthly data to predict quarterly output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
  • Handle: RePEc:fip:fedfer:y:1996:p:3-11:n:3
    as

    Download full text from publisher

    File URL: https://www.frbsf.org/wp-content/uploads/ingenito.pdf
    File Function: Full Text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian Motley, 1992. "Index numbers and the measurement of real GDP," Economic Review, Federal Reserve Bank of San Francisco, pages 3-13.
    2. Bharat Trehan, 1992. "Predicting contemporaneous output," Economic Review, Federal Reserve Bank of San Francisco, pages 3-11.
    3. Hendry, David F & Mizon, Grayham E, 1978. "Serial Correlation as a Convenient Simplification, not a Nuisance: A Comment on a Study of the Demand for Money by the Bank of England," Economic Journal, Royal Economic Society, vol. 88(351), pages 549-563, September.
    4. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    5. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    6. Richard M. Todd, 1984. "Improving economic forecasting with Bayesian vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    7. Robert B. Litterman, 1984. "Above-average national growth in 1985 and 1986," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 8(Fall).
    8. Godfrey, Leslie G, 1978. "Testing against General Autoregressive and Moving Average Error Models When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1293-1301, November.
    9. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    10. Taylor, John B., 1993. "Discretion versus policy rules in practice," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 39(1), pages 195-214, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Don H. Kim, 2008. "Challenges in macro-finance modeling," Finance and Economics Discussion Series 2008-06, Board of Governors of the Federal Reserve System (U.S.).
    2. Tom Stark, 1998. "A Bayesian vector error corrections model of the U.S. economy," Working Papers 98-12, Federal Reserve Bank of Philadelphia.
    3. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    4. Francisco F. R. Ramos, 1996. "Forecasting market shares using VAR and BVAR models: A comparison of their forecasting performance," Econometrics 9601003, University Library of Munich, Germany.
    5. Ford, Stephen A., 1986. "A Beginner'S Guide To Vector Autoregression," Staff Papers 13527, University of Minnesota, Department of Applied Economics.
    6. Pami Dua & Anirvan Banerji & Stephen M. Miller, 2006. "Performance evaluation of the New Connecticut Leading Employment Index using lead profiles and BVAR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 415-437.
    7. Pami Dua & Stephen M. Miller & David J. Smyth, 1996. "Using Leading Indicators to Forecast US Home Sales in a Bayesian VAR Framework," Working papers 1996-08, University of Connecticut, Department of Economics.
    8. Marco Del Negro & Frank Schorfheide, 2004. "Priors from General Equilibrium Models for VARS," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 45(2), pages 643-673, May.
    9. Peter C.B. Phillips, 1992. "Bayes Methods for Trending Multiple Time Series with an Empirical Application to the US Economy," Cowles Foundation Discussion Papers 1025, Cowles Foundation for Research in Economics, Yale University.
    10. Ghent, Andra, 2006. "Comparing Models of Macroeconomic Fluctuations: How Big Are the Differences?," MPRA Paper 180, University Library of Munich, Germany.
    11. Pami Dua & Stephen Miller, 1995. "Forecasting and Analyzing Economic Activity with Coincident and Leading Indexes: The Case of Connecticut," Working papers 1995-05, University of Connecticut, Department of Economics.
    12. Bharat Trehan, 1989. "Forecasting growth in current quarter real GNP," Economic Review, Federal Reserve Bank of San Francisco, issue Win, pages 39-52.
    13. Guangling 'Dave' Liu & Rangan Gupta & Eric Schaling, 2009. "A New-Keynesian DSGE model for forecasting the South African economy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 387-404.
    14. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    15. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    16. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    17. Don H Kim, 2007. "Challenges in macro-finance modeling," BIS Working Papers 240, Bank for International Settlements.
    18. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    19. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    20. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working Papers 200912, University of Pretoria, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfer:y:1996:p:3-11:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Federal Reserve Bank of San Francisco Research Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbsfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.