IDEAS home Printed from https://ideas.repec.org/a/fip/fedcec/00017.html
   My bibliography  Save this article

When Might the Federal Funds Rate Lift Off? Computing the Probabilities of Crossing Unemployment and Inflation Thresholds

Author

Listed:
  • Edward S. Knotek
  • Saeed Zaman

Abstract

The Federal Open Market Committee has been providing guidance to help markets anticipate when it will begin raising the federal funds rate target. The most recent guidance suggests that the target will not change at least until after an unemployment or infl ation threshold is breached. We use a forecasting model to estimate when these thresholds are likely to be breached. We also consider how an infl ation fl oor would affect the timing of liftoff.

Suggested Citation

  • Edward S. Knotek & Saeed Zaman, 2013. "When Might the Federal Funds Rate Lift Off? Computing the Probabilities of Crossing Unemployment and Inflation Thresholds," Economic Commentary, Federal Reserve Bank of Cleveland, issue Dec.
  • Handle: RePEc:fip:fedcec:00017
    DOI: 10.26509/frbc-ec-201319
    as

    Download full text from publisher

    File URL: https://doi.org/10.26509/frbc-ec-201319
    File Function: Full Text
    Download Restriction: no

    File URL: https://libkey.io/10.26509/frbc-ec-201319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saeed Zaman, 2013. "Improving inflation forecasts in the medium to long term," Economic Commentary, Federal Reserve Bank of Cleveland, issue Nov.
    2. Todd E. Clark, 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
    3. Kozicki, Sharon & Tinsley, P. A., 2001. "Term structure views of monetary policy under alternative models of agent expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 149-184, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Todd E. Clark & Edward S. Knotek & Saeed Zaman, 2015. "Measuring Inflation Forecast Uncertainty," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2015(03), pages 1-6, March.
    2. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Investigating Predictors of Inflation in Nigeria: BMA and WALS Techniques," MPRA Paper 88773, University Library of Munich, Germany, revised Feb 2018.
    3. Edward S. Knotek & Saeed Zaman, 2014. "On the Relationships between Wages, Prices, and Economic Activity," Economic Commentary, Federal Reserve Bank of Cleveland, issue Aug.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    2. Saeed Zaman, 2013. "Improving inflation forecasts in the medium to long term," Economic Commentary, Federal Reserve Bank of Cleveland, issue Nov.
    3. Clark, Todd E. & Doh, Taeyoung, 2014. "Evaluating alternative models of trend inflation," International Journal of Forecasting, Elsevier, vol. 30(3), pages 426-448.
    4. Todd E. Clark & Saeed Zaman, 2013. "Forecasting implications of the recent decline in inflation," Economic Commentary, Federal Reserve Bank of Cleveland, issue Nov.
    5. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    6. Todd E. Clark & Edward S. Knotek & Saeed Zaman, 2015. "Measuring Inflation Forecast Uncertainty," Economic Commentary, Federal Reserve Bank of Cleveland, vol. 2015(03), pages 1-6, March.
    7. Edward S. Knotek & Saeed Zaman, 2014. "On the Relationships between Wages, Prices, and Economic Activity," Economic Commentary, Federal Reserve Bank of Cleveland, issue Aug.
    8. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    9. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    11. Orphanides, Athanasios & Wei, Min, 2012. "Evolving macroeconomic perceptions and the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 239-254.
    12. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    13. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    14. Sharon Kozicki & Peter A. Tinsley, 2002. "Alternative sources of the lag dynamics of inflation," Research Working Paper RWP 02-12, Federal Reserve Bank of Kansas City.
    15. Athanasios Orphanides & John C. Williams, 2007. "Inflation targeting under imperfect knowledge," Economic Review, Federal Reserve Bank of San Francisco, pages 1-23.
    16. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Papers 2202.13793, arXiv.org.
    17. Bulkley, George & Giordani, Paolo, 2011. "Structural breaks, parameter uncertainty, and term structure puzzles," Journal of Financial Economics, Elsevier, vol. 102(1), pages 222-232, October.
    18. Carriero, Andrea & Marcellino, Massimiliano & Tornese, Tommaso, 2024. "Blended identification in structural VARs," Journal of Monetary Economics, Elsevier, vol. 146(C).
    19. Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang, 2022. "Predicting returns and dividend growth — The role of non-Gaussian innovations," Finance Research Letters, Elsevier, vol. 46(PA).
    20. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcec:00017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: 4D Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbclus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.