IDEAS home Printed from https://ideas.repec.org/a/fau/aucocz/au2008_237.html
   My bibliography  Save this article

Making Robust Decisions in Discrete Optimization Problems as a Game against Nature

Author

Abstract

In this paper a discrete optimization problem under uncertainty is discussed. Solving such a problem can be seen as a game against nature. In order to choose a solution, the minmax and minmax regret criteria can be applied. In this paper an extension of the known minmax (regret) approach is proposed. It is shown how different types of uncertainty can be simultaneously taken into account. Some exact and approximation algorithms for choosing a best solution are constructed.

Suggested Citation

  • Adam Kasperski, 2008. "Making Robust Decisions in Discrete Optimization Problems as a Game against Nature," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 2(3), pages 237-250, December.
  • Handle: RePEc:fau:aucocz:au2008_237
    as

    Download full text from publisher

    File URL: http://auco.fsv.cuni.cz/storage/48_2008_03_237.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montemanni, R. & Gambardella, L. M., 2005. "A branch and bound algorithm for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 161(3), pages 771-779, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Conde, Eduardo, 2012. "On a constant factor approximation for minmax regret problems using a symmetry point scenario," European Journal of Operational Research, Elsevier, vol. 219(2), pages 452-457.
    2. Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.
    3. Nikulin, Yury, 2005. "Simulated annealing algorithm for the robust spanning tree problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 591, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Montemanni, Roberto, 2006. "A Benders decomposition approach for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1479-1490, November.
    5. Chen, Xujin & Hu, Jie & Hu, Xiaodong, 2009. "A polynomial solvable minimum risk spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 198(1), pages 43-46, October.
    6. Nikulin, Y. & Karelkina, O. & Mäkelä, M.M., 2013. "On accuracy, robustness and tolerances in vector Boolean optimization," European Journal of Operational Research, Elsevier, vol. 224(3), pages 449-457.
    7. Wei Wu & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2022. "An Iterated Dual Substitution Approach for Binary Integer Programming Problems Under the Min-Max Regret Criterion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2523-2539, September.
    8. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
    10. Conde, Eduardo & Candia, Alfredo, 2007. "Minimax regret spanning arborescences under uncertain costs," European Journal of Operational Research, Elsevier, vol. 182(2), pages 561-577, October.
    11. Amadeu Coco & João Júnior & Thiago Noronha & Andréa Santos, 2014. "An integer linear programming formulation and heuristics for the minmax relative regret robust shortest path problem," Journal of Global Optimization, Springer, vol. 60(2), pages 265-287, October.
    12. Mariusz Makuchowski, 2014. "Perturbation algorithm for a minimax regret minimum spanning tree problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 24(1), pages 37-49.
    13. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.

    More about this item

    Keywords

    Discrete optimization; minmax; minmax regret; game against nature;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C79 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:aucocz:au2008_237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lenka Stastna (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.