Mixed Sampling Panel Data Model for Regional Job Vacancies Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bart Hobijn & Aysegul Sahin, 2013.
"Beveridge Curve Shifts across Countries since the Great Recession,"
IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 61(4), pages 566-600, December.
- Bart Hobijn & Ayşegül Şahin, 2012. "Beveridge Curve Shifts across Countries since the Great Recession," Working Paper Series 2012-24, Federal Reserve Bank of San Francisco.
- Andreou, Elena & Ghysels, Eric & Kourtellos, Andros, 2010.
"Regression models with mixed sampling frequencies,"
Journal of Econometrics, Elsevier, vol. 158(2), pages 246-261, October.
- Elena Andreou, Eric Ghysels & Eric Ghysels & Andros Kourtellos, 2007. "Regression Models with Mixed Sampling Frequencies," University of Cyprus Working Papers in Economics 8-2007, University of Cyprus Department of Economics.
- Beck, Nathaniel & Katz, Jonathan N., 1995. "What To Do (and Not to Do) with Time-Series Cross-Section Data," American Political Science Review, Cambridge University Press, vol. 89(3), pages 634-647, September.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
- Dorin JULA & Nicolae-Marius JULA, 2017. "Foreign Direct Investments and Employment. Structural Analysis," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 29-44, June.
- F. Bouvet, 2012. "The Beveridge curve in Europe: new evidence using national and regional data," Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3585-3604, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:eub:ecoecr:v:3:y:2017:i:1:p:3-20 is not listed on IDEAS
- Foroni, Claudia & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"U-MIDAS: MIDAS regressions with unrestricted lag polynomials,"
Discussion Paper Series 1: Economic Studies
2011,35, Deutsche Bundesbank.
- Schumacher, Christian & Marcellino, Massimiliano & Foroni, Claudia, 2012. "U-MIDAS: MIDAS regressions with unrestricted lag polynomials," CEPR Discussion Papers 8828, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- J. Isaac Miller, 2014.
"Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(3), pages 584-614.
- J. Isaac Miller, 2012. "Mixed-frequency Cointegrating Regressions with Parsimonious Distributed Lag Structures," Working Papers 1211, Department of Economics, University of Missouri.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Miller, J. Isaac, 2018.
"Simple robust tests for the specification of high-frequency predictors of a low-frequency series,"
Econometrics and Statistics, Elsevier, vol. 5(C), pages 45-66.
- J. Isaac Miller, 2014. "Simple Robust Tests for the Specification of High-Frequency Predictors of a Low-Frequency Series," Working Papers 1412, Department of Economics, University of Missouri.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Ana Beatriz Galvão & Michael Owyang, 2022.
"Forecasting low‐frequency macroeconomic events with high‐frequency data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.
- Ana B. Galvão & Michael T. Owyang, 2020. "Forecasting Low Frequency Macroeconomic Events with High Frequency Data," Working Papers 2020-028, Federal Reserve Bank of St. Louis, revised Apr 2022.
- Galvao, Ana Beatriz & Owyang, Michael, 2020. "Forecasting Low Frequency Macroeconomic Events with High Frequency Data," EMF Research Papers 38, Economic Modelling and Forecasting Group.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011.
"MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area,"
International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
- Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542, April.
- Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," CEPR Discussion Papers 7445, C.E.P.R. Discussion Papers.
- Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the Euro Area," Economics Working Papers ECO2009/32, European University Institute.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
- Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012.
"Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data),"
Research Memorandum
021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Götz, T.B. & Hecq, A.W. & Urbain, J.R.Y.J., 2014. "Combining distributions of real-time forecasts: An application to U.S. growth," Research Memorandum 027, Maastricht University, Graduate School of Business and Economics (GSBE).
- Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Mikosch, Heiner & Solanko, Laura, 2017. "Should one follow movements in the oil price or in money supply? Forecasting quarterly GDP growth in Russia with higher-frequency indicators," BOFIT Discussion Papers 19/2017, Bank of Finland Institute for Emerging Economies (BOFIT).
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil prices," MPRA Paper 77531, University Library of Munich, Germany.
- Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
- Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014.
"Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
- Luci Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon M. Potter, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Staff Reports 680, Federal Reserve Bank of New York.
- Onorante, Luca & Alessi, Lucia & Ghysels, Eric & Potter, Simon & Peach, Richard, 2014. "Central bank macroeconomic forecasting during the global financial crisis: the European Central Bank and Federal Reserve Bank of New York experiences," Working Paper Series 1688, European Central Bank.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017.
"Density Forecasts With Midas Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
- Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
More about this item
Keywords
job vacancy; unemployment rate; gross domestic product; panel data model; MIDAS; forecasting methods;All these keywords.
JEL classification:
- C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- J63 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Turnover; Vacancies; Layoffs
- J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eub:ecoecr:v:1:y:2017:i:1:p:3-20. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antoniade Ciprian Alexandru (email available below). General contact details of provider: https://www.ueb.ro/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.