IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxivy2021ispecial2p513-522.html
   My bibliography  Save this article

Profiling and Segmenting Clients with the Use of Machine Learning Algorithms

Author

Listed:
  • Pawel Rymarczyk
  • Piotr Golabek
  • Sylwia Skrzypek - Ahmed
  • Magdalena Rzemieniak

Abstract

Purpose: The aim of the article is to develop a solution for customer profiling and segmentation using modern machine learning methods. Design/Methodology/Approach: Models were developed to improve the analysis of data, human behavior, data mining business processes, and as a result, the creation and provision of new improved solutions using machine learning algorithms. The GRU method was used, which is a simplified but also a more streamlined version of the LSTM cell offering similar performance with a much lower computation time. Findings: The main purpose of the developed solution is to enable and improve the analysis of profiling and segmentation of customers for forecasting sales, due to the possibility of detecting or determining additional seasonal effects. Practical Implications: Effective tools have been developed to enable customer segmentation. A more complex model was used, taking into account the sale, especially in the sense of the time series in which the sale took place. In its form, the model consists of a trend function modeling non-periodic changes in the value of time series periodic changes. Originality/Value: A novelty is the use of the GRU network, which is an improved version of the standard recursive neural network and a simplified version of the standard LSTM network. Similarly to LSTM networks, it aims to solve the problem of a vanishing gradient, i.e., its disappearance or explosion. In the presented solution, a more complex model was used, consisting of several components and taking into account sales, especially in the sense of the time series in which the sale took place.

Suggested Citation

  • Pawel Rymarczyk & Piotr Golabek & Sylwia Skrzypek - Ahmed & Magdalena Rzemieniak, 2021. "Profiling and Segmenting Clients with the Use of Machine Learning Algorithms," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 513-522.
  • Handle: RePEc:ers:journl:v:xxiv:y:2021:i:special2:p:513-522
    as

    Download full text from publisher

    File URL: https://www.ersj.eu/journal/2281/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agnieszka Bojanowska & Monika Kulisz, 2020. "Polish Consumers’ Response to Social Media Eco-Marketing Techniques," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    2. Gianluca Bontempi & Souhaib Ben Taieb & Yann-Aël Le Borgne, 2013. "Machine learning strategies for time series forecasting," ULB Institutional Repository 2013/167761, ULB -- Universite Libre de Bruxelles.
    3. Eugene W. Anderson & Mary W. Sullivan, 1993. "The Antecedents and Consequences of Customer Satisfaction for Firms," Marketing Science, INFORMS, vol. 12(2), pages 125-143.
    4. Patrik Skogster & Varpu Uotila, 2008. "Collecting Consumer Behavior Data with WLAN," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 1(2), pages 57-75, April.
    5. Konuş, Umut & Verhoef, Peter C. & Neslin, Scott A., 2008. "Multichannel Shopper Segments and Their Covariates," Journal of Retailing, Elsevier, vol. 84(4), pages 398-413.
    6. Lukasz Skowron & Marcin Gąsior & Monika Sak-Skowron, 2020. "The Impact of a Time Gap on the Process of Building a Sustainable Relationship between Employee and Customer Satisfaction," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    7. Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahar Karimi, 2021. "Cross-visiting Behaviour of Online Consumers Across Retailers’ and Comparison Sites, a Macro-Study," Information Systems Frontiers, Springer, vol. 23(3), pages 531-542, June.
    2. Maity, Moutusy & Dass, Mayukh & Malhotra, Naresh K., 2014. "The Antecedents and Moderators of Offline Information Search: A Meta-Analysis," Journal of Retailing, Elsevier, vol. 90(2), pages 233-254.
    3. Pallant, Jessica & Sands, Sean & Karpen, Ingo, 2020. "Product customization: A profile of consumer demand," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    4. Aiolfi Simone & Edoardo Sabbadin, 2017. "The New Paradigm of the Omnichannel Retailing: Key Drivers, New Challenges and Potential Outcomes Resulting from the Adoption of an Omnichannel Approach," International Journal of Business and Management, Canadian Center of Science and Education, vol. 13(1), pages 1-85, December.
    5. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    6. Neslin, Scott A., 2022. "The omnichannel continuum: Integrating online and offline channels along the customer journey," Journal of Retailing, Elsevier, vol. 98(1), pages 111-132.
    7. Hui, Xiang & Klein, Tobias & Stahl, Konrad, 2022. "Learning from Online Ratings," CEPR Discussion Papers 17006, C.E.P.R. Discussion Papers.
    8. Angulo-Ruiz, Fernando & Pergelova, Albena & Cheben, Juraj & Angulo-Altamirano, Eladio, 2016. "A cross-country study of marketing effectiveness in high-credence services," Journal of Business Research, Elsevier, vol. 69(9), pages 3636-3644.
    9. Andreas Herrmann & Michael D. Johnson, 1999. "Die Kundenzufriedenheit als Bestimmungsfaktor der Kundenbindung," Schmalenbach Journal of Business Research, Springer, vol. 51(6), pages 579-598, June.
    10. Yeung, Matthew C.H. & Ramasamy, Bala & Chen, Junsong & Paliwoda, Stan, 2013. "Customer satisfaction and consumer expenditure in selected European countries," International Journal of Research in Marketing, Elsevier, vol. 30(4), pages 406-416.
    11. Vishal Gaur & Young-Hoon Park, 2007. "Asymmetric Consumer Learning and Inventory Competition," Management Science, INFORMS, vol. 53(2), pages 227-240, February.
    12. Yanlong Guo & Jiaying Yu & Han Zhang & Zuoqing Jiang, 2022. "A Study on Cultural Context Perception in Huizhou Cultural and Ecological Reserve Based on Multi-Criteria Decision Analysis," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    13. Brady, Michael K. & Robertson, Christopher J. & Cronin, J. Joseph, 2001. "Managing behavioral intentions in diverse cultural environments: an investigation of service quality, service value, and satisfaction for American and Ecuadorian fast-food customers," Journal of International Management, Elsevier, vol. 7(2), pages 129-149.
    14. Tae-Seung Park & Jun-Su Kim & Jiyoun Kim, 2021. "The Impact of Perceived Hapkido Service Quality on Exercise Continuation and Recommendation Intentions, with a Focus on Korean Middle and High School Students," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    15. Heribert Gierl & Gunter Gehrke, 2004. "Kundenbindung in industriellen Zuliefer-Abnehmer-Beziehungen," Schmalenbach Journal of Business Research, Springer, vol. 56(3), pages 203-236, May.
    16. Tingting Song & Jinghua Huang & Yong Tan & Yifan Yu, 2019. "Using User- and Marketer-Generated Content for Box Office Revenue Prediction: Differences Between Microblogging and Third-Party Platforms," Service Science, INFORMS, vol. 30(1), pages 191-203, March.
    17. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    18. Pelau Corina & Barbul Maria, 2021. "Consumers’ perception on the use of cognitive computing," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 639-649, December.
    19. Eelco Kappe & Ashley Stadler Blank & Wayne S. DeSarbo, 2014. "A General Multiple Distributed Lag Framework for Estimating the Dynamic Effects of Promotions," Management Science, INFORMS, vol. 60(6), pages 1489-1510, June.
    20. Maggioni, Isabella & Sands, Sean & Kachouie, Reza & Tsarenko, Yelena, 2019. "Shopping for well-being: The role of consumer decision-making styles," Journal of Business Research, Elsevier, vol. 105(C), pages 21-32.

    More about this item

    Keywords

    Machine learning; forecasting; data mining; LSTM.;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • M30 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiv:y:2021:i:special2:p:513-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.