IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxivy2021i3-part1p985-1000.html
   My bibliography  Save this article

Forecasting the Unemployment Rate: Application of Selected Prediction Methods

Author

Listed:
  • Michal Gostkowski
  • Tomasz Rokicki

Abstract

Purpose: Unemployment rate prediction has become critically significant, because it can be used by governments to make decision and design accurate policies. The paper's main objective is to compare the most significant predictive methods for modeling the unemployment rate. Design/Methodology/Approach: In this work, the selected predictive methods (naive method, regression model, ARIMA, Holt model and Winters model) were described, developed and compared using data collected by Central Statistical Office. Findings: The considered methods enable to predict the unemployment rate with high accuracy. The results of experiments allow to conclude that the most suited methods of forecasting the unemployment rate are the quadratic regression model and the Winters multiplicative model. Practical Implications: Forecasting the unemployment rate is one of the important elements in economy and presented methods can be easily used by labor market entities to predict and verify the situation in the market. Originality/Value: Forecasting the unemployment rate is an extremely difficult and demanding task, but on the other hand, it can be an effective tool that supports planning processes. The conducted research showed the quadratic regression model and the Winters multiplicative model provide high accuracy in terms of modeling the unemployment rate

Suggested Citation

  • Michal Gostkowski & Tomasz Rokicki, 2021. "Forecasting the Unemployment Rate: Application of Selected Prediction Methods," European Research Studies Journal, European Research Studies Journal, vol. 0(3 - Part ), pages 985-1000.
  • Handle: RePEc:ers:journl:v:xxiv:y:2021:i:3-part1:p:985-1000
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/2396/download
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Forecasting; time series; regression model; ARIMA; Winters model.;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiv:y:2021:i:3-part1:p:985-1000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.