IDEAS home Printed from https://ideas.repec.org/a/ers/ijfirm/v7y2017i2p1351.html
   My bibliography  Save this article

Heavy-tailed distribution, GARCH models and the silver returns

Author

Listed:
  • Andrew Maree
  • Peter Card
  • Paul Kidman

Abstract

After serving as a medium of exchange for the human society, silver is still widely used in our daily life. From the jewellery, electronic and electrical industries as well as medicine, optics, the power industry, automotive industry and many other industries, silver is still playing a very active role. In addition to the industrial usage, silver also serves as an investment tool for many financial institutions. Thus, it is crucial to develop effective quantitative risk management tool for those financial institutions. In this paper, we investigate the conditional heavy tails of daily silver spot returns under the GARCH framework. Our results indicate that that it is important to introduce heavy-tailed distributions to the GARCH framework and the normal reciprocal inverse Gaussian (NRIG) distribution, a newly-developed distribution, has the best empirical performance in capture the daily silver spot returns dynamics.

Suggested Citation

  • Andrew Maree & Peter Card & Paul Kidman, 2017. "Heavy-tailed distribution, GARCH models and the silver returns," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 7(2), pages 1351-1351.
  • Handle: RePEc:ers:ijfirm:v:7:y:2017:i:2:p:1351
    as

    Download full text from publisher

    File URL: https://journalfirm.com/journal/169/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian Lucey & Edel Tully, 2006. "Seasonality, risk and return in daily COMEX gold and silver data 1982-2002," Applied Financial Economics, Taylor & Francis Journals, vol. 16(4), pages 319-333.
    2. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    3. Su, Jung-Bin & Hung, Jui-Cheng, 2011. "Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation," Economic Modelling, Elsevier, vol. 28(3), pages 1117-1130, May.
    4. Simone Kruse & Thomas Tischer & Timo Wittig, 2017. "A New Empirical Investigation Of The Platinum Spot Returns," Journal of Smart Economic Growth, , vol. 2(2), pages 141-148, September.
    5. Bentes, Sonia R., 2016. "Long memory volatility of gold price returns: How strong is the evidence from distinct economic cycles?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 149-160.
    6. Akgiray, Vedat, et al, 1991. "Conditional Dependence in Precious Metal Prices," The Financial Review, Eastern Finance Association, vol. 26(3), pages 367-386, August.
    7. Stephanos Papadamou & Thomas Markopoulos, 2014. "Investigating Intraday Interdependence Between Gold, Silver and Three Major Currencies: the Euro, British Pound and Japanese Yen," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 20(4), pages 399-410, November.
    8. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    9. Benjamin R. Auer, 2015. "Superstitious seasonality in precious metals markets? Evidence from GARCH models with time-varying skewness and kurtosis," Applied Economics, Taylor & Francis Journals, vol. 47(27), pages 2844-2859, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Auer, Benjamin R. & Rottmann, Horst, 2014. "Is there a Friday the 13th effect in emerging Asian stock markets?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 1(C), pages 17-26.
    2. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    3. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    4. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.
    5. Noori, Mohammad & Hitaj, Asmerilda, 2023. "Dissecting hedge funds' strategies," International Review of Financial Analysis, Elsevier, vol. 85(C).
    6. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    8. Simone Kruse & Thomas Tischer & Timo Wittig, 2017. "A New Empirical Investigation Of The Platinum Spot Returns," Journal of Smart Economic Growth, , vol. 2(2), pages 141-148, September.
    9. Buczyński Mateusz & Chlebus Marcin, 2018. "Comparison of Semi-Parametric and Benchmark Value-At-Risk Models in Several Time Periods with Different Volatility Levels," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(2), pages 67-82, June.
    10. Stavros Stavroyiannis, 2017. "A note on the Nelson Cao inequality constraints in the GJR-GARCH model: Is there a leverage effect?," Papers 1705.00535, arXiv.org.
    11. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    12. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    13. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    14. Muhammad Sheraz & Imran Nasir, 2021. "Information-Theoretic Measures and Modeling Stock Market Volatility: A Comparative Approach," Risks, MDPI, vol. 9(5), pages 1-20, May.
    15. Wagner, Niklas, 2004. "Time-varying moments, idiosyncratic risk, and an application to hot-issue IPO aftermarket returns," Research in International Business and Finance, Elsevier, vol. 18(1), pages 59-72, April.
    16. Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
    17. Rannou, Yves & Barneto, Pascal, 2016. "Futures trading with information asymmetry and OTC predominance: Another look at the volume/volatility relations in the European carbon markets," Energy Economics, Elsevier, vol. 53(C), pages 159-174.
    18. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    19. C. James Hueng & Ruey Yau, 2006. "Investor preferences and portfolio selection: is diversification an appropriate strategy?," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 255-271.
    20. Bali, Rakesh & Guirguis, Hany, 2007. "Extreme observations and non-normality in ARCH and GARCH," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 332-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:ijfirm:v:7:y:2017:i:2:p:1351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://journalfirm.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.