IDEAS home Printed from https://ideas.repec.org/a/eme/ijppmp/ijppm-09-2020-0481.html
   My bibliography  Save this article

Analysis of enablers for the digitalization of supply chain using an interpretive structural modelling approach

Author

Listed:
  • Prakash Agrawal
  • Rakesh Narain

Abstract

Purpose - Over the years, technology development has rationalized supply chain processes. The demand economy is disrupting every sector causing the supply chain to be more innovative than ever before. The digitalization of the supply chain fulfils this demand. Several technologies such as blockchain, big data analytics, 3D printing, Internet of things (IoT), artificial intelligence (AI), augmented reality (AR), etc. have been innovated in recent years, which expedite the digitalization of the supply chain. The paper aims to analyse the applicability of these technological enablers in the digital transformation of the supply chain and to present an interpretive structural modelling (ISM) model, which presents a sequence in which enablers can be implemented in a sequential manner. Design/methodology/approach - This paper employed the ISM approach to propose a various levelled model for the enablers of the digital supply chain. The enablers are also classified graphically based on their driving and dependence powers using matrix multiplication cross-impact applied to classification (MICMAC) analysis. Findings - The study indicates that the enablers “big data analytics”, “IoT”, “blockchain” and “AI” are the most powerful enablers for the digitalization of the supply chain and actualizing these enablers should be a topmost concern for organizations, which want to exploit new opportunities created by these technologies. Practical implications - This study presents a systematic approach to adopt new technologies for performing various supply chain activities and assists the policymakers better organize their assets and execution endeavours towards digitalization of the supply chain. Originality/value - This is one of the initial research studies, which has analysed the enablers for the digitalization supply chain using the ISM approach.

Suggested Citation

  • Prakash Agrawal & Rakesh Narain, 2021. "Analysis of enablers for the digitalization of supply chain using an interpretive structural modelling approach," International Journal of Productivity and Performance Management, Emerald Group Publishing Limited, vol. 72(2), pages 410-439, July.
  • Handle: RePEc:eme:ijppmp:ijppm-09-2020-0481
    DOI: 10.1108/IJPPM-09-2020-0481
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJPPM-09-2020-0481/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/IJPPM-09-2020-0481/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/IJPPM-09-2020-0481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Titov Sergei & Trachuk Arkady & Linder Natalya & RD Pathak & Danny Samson & Zafar Husain & S Sushil, 2023. "Digital transformation enablers in high-tech and low-tech companies: A comparative analysis," Australian Journal of Management, Australian School of Business, vol. 48(4), pages 801-843, November.
    2. Naoum Tsolakis & Roman Schumacher & Manoj Dora & Mukesh Kumar, 2023. "Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation?," Annals of Operations Research, Springer, vol. 327(1), pages 157-210, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:ijppmp:ijppm-09-2020-0481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.